摘要:
A method for dynamically operating a multi-core processor system is provided. The method involves ascertaining currently active processor cores, identifying a currently active processor core having a lowest operating frequency, and adjusting at least one operational parameter according to voltage-frequency characteristics corresponding to the identified processor core to fulfill a predefined functional mode, e.g. power optimization mode, performance optimization mode and mixed mode.
摘要:
A method for dynamically operating a multi-core processor system is provided. The method involves ascertaining currently active processor cores, identifying a currently active processor core having a lowest operating frequency, and adjusting at least one operational parameter according to voltage-frequency characteristics corresponding to the identified processor core to fulfill a predefined functional mode, e.g. power optimization mode, performance optimization mode and mixed mode.
摘要:
Methods and apparatus relating to power management for multiple processor cores are described. In one embodiment, one or more techniques may be utilized locally (e.g., on a per core basis) to manage power consumption in a processor. In another embodiment, power may be distributed among different power planes of a processor based on energy-based considerations. Other embodiments are also disclosed and claimed.
摘要:
Methods and apparatus relating to power management for multiple processor cores are described. In one embodiment, one or more techniques may be utilized locally (e.g., on a per core basis) to manage power consumption in a processor. In another embodiment, power may be distributed among different power planes of a processor based on energy-based considerations. Other embodiments are also disclosed and claimed.
摘要:
Methods and apparatus relating to power management for multiple processor cores are described. In one embodiment, one or more techniques may be utilized locally (e.g., on a per core basis) to manage power consumption in a processor. In another embodiment, power may be distributed among different power planes of a processor based on energy-based considerations. Other embodiments are also disclosed and claimed.
摘要:
Methods and apparatus relating to deterministic management of dynamic thermal response of processors are described. In one embodiment, available thermal headroom may be used to extract the performance potential in a deterministic way, e.g., such that it reduces or even eliminates the product-to-product variations. Other embodiments are also disclosed and claimed.
摘要:
Methods and apparatus relating to deterministic management of dynamic thermal response of processors are described. In one embodiment, available thermal headroom may be used to extract the performance potential in a deterministic way, e.g., such that it reduces or even eliminates the product-to-product variations. Other embodiments are also disclosed and claimed.
摘要:
In one embodiment, the present invention includes a method for determining a power budget for a multi-domain processor for a current time interval, determining a portion of the power budget to be allocated to first and second domains of the processor, and controlling a frequency of the domains based on the allocated portions. Such determinations and allocations can be dynamically performed during runtime of the processor. Other embodiments are described and claimed.
摘要:
In one embodiment, the present invention includes a method for determining, in a controller of a multi-domain processor, whether a temperature of a second domain of the multi-domain processor is greater than a sum of a throttle threshold and a cross-domain margin, and if so, reducing a frequency of a first domain of the multi-domain processor by a selected amount. In this way, a temperature of the second domain can be allowed to reduce, given a thermal coupling of the domains. Other embodiments are described and claimed.
摘要:
In one embodiment, the present invention includes a processor having multiple domains including at least a core domain and a non-core domain that is transparent to an operating system (OS). The non-core domain can be controlled by a driver. In turn, the processor further includes a memory interconnect to interconnect the core domain and the non-core domain to a memory coupled to the processor. Still further, a power controller, which may be within the processor, can control a frequency of the memory interconnect based on memory boundedness of a workload being executed on the non-core domain. Other embodiments are described and claimed.