摘要:
In a method of forming a semiconductor device on a semiconductor substrate (100), a photoresist layer (102) is deposited on the semiconductor substrate; a window (106) is formed in the photoresist layer (102) by electron beam lithography; a conformal layer (108) is deposited on the photoresist layer (102) and in the window (106); and substantially all of the conformal layer (108) is selectively removed from the photoresist layer (102) and a bottom portion of the window to form dielectric sidewalls (110) in the window (106).
摘要:
In a method of forming a semiconductor device on a semiconductor substrate (100), a photoresist layer (102) is deposited on the semiconductor substrate; a window (106) is formed in the photoresist layer (102) by electron beam lithography; a conformal layer (108) is deposited on the photoresist layer (102) and in the window (106); and substantially all of the conformal layer (108) is selectively removed from the photoresist layer (102) and a bottom portion of the window to form dielectric sidewalls (110) in the window (106).
摘要:
In a method of forming a semiconductor device on a semiconductor substrate (100), a photoresist layer (102) is deposited on the semiconductor substrate; a window (106) is formed in the photoresist layer (102) by electron beam lithography; a conformal layer (108) is deposited on the photoresist layer (102) and in the window (106); and substantially all of the conformal layer (108) is selectively removed from the photoresist layer (102) and a bottom portion of the window to form dielectric sidewalls (110) in the window (106).
摘要:
In a method of forming a semiconductor device on a semiconductor substrate (100), a photoresist layer (102) is deposited on the semiconductor substrate; a window (106) is formed in the photoresist layer (102) by electron beam lithography; a conformal layer (108) is deposited on the photoresist layer (102) and in the window (106); and substantially all of the conformal layer (108) is selectively removed from the photoresist layer (102) and a bottom portion of the window to form dielectric sidewalls (110) in the window (106).
摘要:
An InP high electron mobility transistor (HEMT) structure in which a gate metal stack includes an additional thin layer of a refractory metal, such as molybdenum (Mo) or platinum (Pt) at a junction between the gate metal stack and a Schottky barrier layer in the HEMT structure. The refractory metal layer reduces or eliminates long-term degradation of the Schottky junction between the gate metal and the barrier layer, thereby dramatically improving long-term reliability of InP HEMTs, but without sacrifice in HEMT performance, whether used as a discrete device or in an integrated circuit.
摘要:
An InP high electron mobility transistor (HEMT) structure in which a gate metal stack includes an additional thin layer of a refractory metal, such as molybdenum (Mo) or platinum (Pt) at a junction between the gate metal stack and a Schottky barrier layer in the HEMT structure. The refractory metal layer reduces or eliminates long-term degradation of the Schottky junction between the gate metal and the barrier layer, thereby dramatically improving long-term reliability of InP HEMTs, but without sacrifice in HEMT performance, whether used as a discrete device or in an integrated circuit.
摘要:
A semiconductor device is fabricated to include source and drain contacts including an ohmic metal sunken into the barrier layer and a portion of the channel layer; a protective dielectric layer disposed between the source and drain contacts on the barrier layer; a metallization layer disposed in drain and source ohmic vias between the source contact and the protective dielectric layer and between the protective dielectric layer and the drain contact; and a metal T-gate disposed above the barrier layer including a field mitigating plate disposed on a side portion of a stem of the metal T-gate.
摘要:
A method is provided for forming a gate contact for a compound semiconductor device. The gate contact is formed from a gate contact portion and a top or wing contact portion. The method allows for the tunablity of the size of the wing contact portion, while retaining the size of the gate contact portion based on a desired operational frequency. This is accomplished by providing for one or more additional conductive material processes on the wing contact portion to increase the cross-sectional area of the wing contact portion reducing the gate resistance, while maintaing the length of the gate contact portion to maintain the operating frequency of the device.
摘要:
A method of fabricating a T-gate HEMT with a club extension comprising the steps of: providing a substrate; providing a bi-layer resist on the substrate; exposing an area of the bi-layer resist to electron beam lithography where the area corresponds to a T-gate opening; exposing an area of the bi-layer resist to electron beam lithography where the area corresponds to the shape of the club extension wherein the area corresponding to the club extension is approximately 1 micron to an ohmic source side of a T-gate and approximately 0.5 microns forward from a front of the T-gate; developing out the bi-layer resist in the exposed area that corresponds to the T-gate opening; developing out the bi-layer resist in the exposed area that corresponds to the club extension; and forming the T-gate and club extension through a metallization process.
摘要:
A semiconductor device is fabricated to include source and drain contacts including an ohmic metal sunken into the barrier layer and a portion of the channel layer; a protective dielectric layer disposed between the source and drain contacts on the barrier layer; a metallization layer disposed in drain and source ohmic vias between the source contact and the protective dielectric layer and between the protective dielectric layer and the drain contact; and a metal T-gate disposed above the barrier layer including a field mitigating plate disposed on a side portion of a stem of the metal T-gate.