Abstract:
Techniques for improved feature detection are described. In one embodiment, for example, a device may include a processor circuit and a feature detection module, and the feature detection module may be operative on the processor circuit to perform a first feature detection iteration for a graphics information element using an integral pixel value array, determine a scaling factor, recalculate the integral pixel value array based on the scaling factor, and perform a second feature detection iteration for the graphics information element using the recalculated integral pixel value array. Other embodiments are described and claimed.
Abstract:
Systems and method may provide for a computing device that encodes multiple regions of a video frame at different quality levels. In particular, a first region of one or more frames containing a speaker's face may be located and encoded at a first quality level. A second region containing a background, on the other hand, may be located and encoded at a second quality level. Optionally a third region containing additional faces may be located and encoded at a third quality level and a fourth region may be located and encoded at a fourth quality level.
Abstract:
Antimicrobial silicone-based dressings, such as wound dressings, are disclosed. An example dressing comprises a transparent and self-adhesive gel sheet cured from a liquid containing silicone, the sheet having dispersed therein (i) particulates of a chlorhexidine compound that is not soluble in the liquid; and (ii) at least one other antimicrobial. Methods of making the silicone-based dressings and methods of use are also disclosed.
Abstract:
The invention provides a video codec. In one embodiment, the video codec is coupled to an outer memory storing a reference frame, and comprises an interface circuit, an in-chip memory, a motion estimation circuit, and a controller. The interface circuit obtains in-chip data from the reference frame stored in the outer memory. The in-chip memory stores the in-chip data. The motion estimation circuit retrieves search window data from the in-chip data with a search window, and performs a motion estimation process on a current macroblock according to the search-window data. The controller shifts the location of the search window when the current macroblock is shifted, marks a macroblock shifted out from the search window as an empty macroblock, and controls the interface circuit to obtain an updated macroblock for replacing the empty macroblock in the in-chip memory from the reference frame stored in the outer memory.
Abstract:
Systems and techniques of voice personalization for machine reading are described herein. A message with textual content may be received. A sender of the message may be identified. A voice model that corresponds to the sender may be identified. An audio representation of the textual content may be rendered using the voice model.
Abstract:
Described herein are methods to form silicon dioxide films that have extremely low wet etch rate in HF solution using a thermal CVD process, ALD process or cyclic CVD process in which the silicon precursor is selected from one of: R1nR2mSi(NR3R4)4-n-m; and, a cyclic silazane of (R1R2SiNR3)p, where R1 is an alkenyl or an aromatic, such as vinyl, allyl, and phenyl; R2, R3, and R4 are selected from H, alkyl with C1-C10, linear, branched, or cyclic, an alkenyl with C2-C10 linear, branched, or cyclic, and aromatic; n=1-3, m=0-2; p=3-4.
Abstract translation:本文描述了形成二氧化硅膜的方法,其使用热CVD法,ALD法或循环CVD法在HF溶液中具有极低的湿蚀刻速率,其中硅前体选自以下之一:R1nR2mSi(NR3R4)4-n-m; 和(R 1 R 2 SiNR 3)p的环状硅氮烷,其中R 1是烯基或芳族,例如乙烯基,烯丙基和苯基; R2,R3和R4选自H为具有C1-C10,直链,支链或环状的烷基,具有C2-C10直链,支链或环状和芳族的烯基; n = 1-3,m = 0-2; p = 3-4。
Abstract:
Described herein is a method and liquid-based precursor composition for depositing a multicomponent film. In one embodiment, the method and compositions described herein are used to deposit Germanium Tellurium (GeTe), Antimony Tellurium (SbTe), Antimony Germanium (SbGe), Germanium Antimony Tellurium (GST), Indium Antimony Tellurium (IST), Silver Indium Antimony Tellurium (AIST), Cadmium Telluride (CdTe), Cadmium Selenide (CdSe), Zinc Telluride (ZnTe), Zinc Selenide (ZnSe), Copper indium gallium selenide (CIGS) films or other tellurium and selenium based metal compounds for phase change memory and photovoltaic devices.
Abstract:
Described herein is a method and liquid-based precursor composition for depositing a multicomponent film. In one embodiment, the method and compositions described herein are used to deposit Germanium Tellurium (GeTe), Antimony Tellurium (SbTe), Antimony Germanium (SbGe), Germanium Antimony Tellurium (GST), Indium Antimony Tellurium (IST), Silver Indium Antimony Tellurium (AIST), Cadmium Telluride (CdTe), Cadmium Selenide (CdSe), Zinc Telluride (ZnTe), Zinc Selenide (ZnSe), Copper indium gallium selenide (CIGS) films or other tellurium and selenium based metal compounds for phase change memory and photovoltaic devices.
Abstract:
Self-reinforced tissue shields are useful as ophthalmic shields, wound dressings, wound barriers, nerve repair, therapeutic drug delivery devices and the like. The self-reinforced tissue protective shields comprise gelatin, chitosan and reinforce and are made by a method comprising forming inter-molecular locking within a solution through electrostatic forces, eliminating the use of extra cross-linking methods, the solution mainly comprising natural existing polymers that are biodegradable and biocompatible.
Abstract:
This invention discloses the synthesis of metal chalcogenides using chemical vapor deposition (CVD) process, atomic layer deposition (ALD) process, or wet solution process. Ligand exchange reactions of organosilyltellurium or organosilylselenium with a series of metal compounds having neucleophilic substituents generate metal chalcogenides. This chemistry is used to deposit germanium-antimony-tellurium (GeSbTe) and germanium-antimony-selenium (GeSbSe) films or other tellurium and selenium based metal compounds for phase change memory and photovoltaic devices.