摘要:
Improved systems and methods for implementing data-driven protocols are provided. In one embodiment, improved implementations of multicast routing protocols are provided. Separation between multicast forwarding and control elements are provided by use of a powerful yet simple application program interface (API) for inter-module communication. The API is multicast-routing-protocol-independent and can be used to express the forwarding state of any existing multicast protocol. Efficient platform-specific implementations are facilitated.
摘要:
The invention provides a convenient and expandable method for transmitting one or more loss rate statistics determined in a distributed manner from a multicast distribution tree to a source computer. First, the loss rate statistics are collected in a distributed manner from target receiver stations, and from routers in the multicast distribution tree. Second, there is a distributed calculation of statistics on loss rate by routers in the multicast distribution tree. Third, there is transportation of the loss rate statistics back to the source computer in reverse along the multicast distribution tree. For example, congestion information is collected by routers, and the congestion information is sent upstream to the multicast source station in fields of NAK messages. A router may receive a NAK packet in transit from an intended destination station to a source station, the NAK packet indicating loss of a data packet. The router writes a loss rate statistic determined by the router into a “loss rate field” of a message to be sent upstream along the reverse of the distribution tree. The router determines the loss rate statistic to be written into the loss rate field of the message, in response to: analyzing the loss rate statistics on each of its links; the loss rate reported by the incoming NAK packet; and, the elapsed time from the time stamp showing when the various loss rate statistics were determined.
摘要:
Improved systems and methods for implementing data-driven protocols are provided. In one embodiment, improved implementations of multicast routing protocols are provided. Separation between multicast forwarding and control elements are provided by use of a powerful yet simple application program interface (API) for inter-module communication. The API is multicast-routing-protocol-independent and can be used to express the forwarding state of any existing multicast protocol. Efficient platform-specific implementations are facilitated.
摘要:
Improved systems and methods for implementing data-driven protocols are provided. In one embodiment, improved implementations of multicast routing protocols are provided. Separation between multicast forwarding and control elements are provided by use of a powerful yet simple application program interface (API) for inter-module communication. The API is multicast-routing-protocol-independent and can be used to express the forwarding state of any existing multicast protocol. Efficient platform-specific implementations are facilitated.
摘要:
Combining parallel Hypertext Transfer Protocol (HTTP) connections and pipelining overcomes an impact of increasing Round Trip Time (RTT) by varying in real time the number of parallel connections and pipelined requests such that the number of outstanding requests is minimal and the link remains fully utilized. Optimal construction and scheduling of requests and connections in an HTTP stack improves page load time and also provides for greater responsiveness to changes in object priorities. Multi-homing and mobility at the application layer for HTTP are addressed. Multi-homing provides for simultaneous use of multiple interfaces, for example WWAN and WLAN interfaces which improves download time, especially in the case that the available bandwidth the interfaces is of the same order of magnitude. Mobility provides for switching connections as the device moves. In combination they provide for smoother mobility. Mobility can be provided this way without server or network support.
摘要:
Methods and apparatuses are provided that facilitate providing an object-based transport protocol that allows transmission of arbitrarily sized objects over a network protocol layer. The object-based transport protocol can also provide association of metadata with the objects to control communication thereof, and/or communication of response objects. Moreover, the object-based transport protocol can maintain sessions with remote network nodes that can include multiple channels, which can be updated over time to seamlessly provide mobility, increased data rates, and/or the like. In addition, properties can be modified remotely by network nodes receiving objects related to the properties.
摘要:
Route changes are processed and filtered to notify a client of those routing updates of interest to a client. In one configuration, a set of network addresses are received from a client indicating route updates of interest to the client and a set of types of routing changes that are of interest. One or more data structures are accordingly populated with this information. In response to receiving a route update, one or more lookup operations are performed on the data structure to identify whether this particular route is of interest to a particular client and/or whether any route dependent on the particular route are of interest to a client. The client is notified of the changes of interest. In one embodiment, the type of change to a route is also matched against a set of types of routing changes that are of interest, and a client is only notified if the change to a route of interest also matches a type of routing change of interest.
摘要:
A block-request streaming system provides for improvements in the user experience and bandwidth efficiency of such systems, typically using an ingestion system that generates data in a form to be served by a conventional file server (HTTP, FTP, or the like), wherein the ingestion system intakes content and prepares it as files or data elements to be served by the file server, which might or might not include a cache. A client device can be adapted to take advantage of the ingestion process as well as including improvements that make for a better presentation independent of the ingestion process. In the block-request streaming system, the an ingestion system generates data according to erasure codes and the client device, through various selection and timing of requests for media data and redundant data, can efficiently decode media to provide for presentations.
摘要:
A communications system can provide methods of dynamically interleaving streams, including methods for dynamically introducing greater amounts of interleaving as a stream is transmitted independently of any source block structure to spread out losses or errors in the channel over a much larger period of time within the original stream than if interleaving were not introduced, provide superior protection against packet loss or packet corruption when used with FEC coding, provide superior protection against network jitter, and allow content zapping time and the content transition time to be reduced to a minimum and minimal content transition times. Streams may be partitioned into sub-streams, delivering the sub-streams to receivers along different paths through a network and receiving concurrently different sub-streams at a receiver sent from potentially different servers. When used in conjunction with FEC encoding, the methods include delivering portions of an encoding of each source block from potentially different servers.
摘要:
A mobile computing device adapted to request to receive a plurality of objects comprising a website in a new order, the new order being different than an original order, wherein, at least a portion of the original order comprises an order provided from a base level website object. The new order for requesting to receive the plurality of objects is based on at least one of a plurality of metrics. The metrics comprise a depth of each of the plurality of objects, one or more children of the plurality of objects, an object type for each of the plurality of objects, whether a connection has been established with a domain servicing each of the plurality of objects, and when the connection was last established to the domain servicing each of the plurality of objects.