Abstract:
A device manufacturing method prevents damage from plasma charging and vertical cross talk. The method comprises the steps of forming an insulating layer over a substrate that has a MOS device and source/drain regions already formed thereon. The insulating layer is formed by a non-plasma operation so that plasma damage is avoided. Thereafter, a conductive layer is formed over the substrate. The conductive layer is used to channel away excess charges produced during subsequent plasma operations, thereby balancing electric potential and preventing damage to the device from current flow. Subsequently, an inter-layer dielectric layer is formed over the conductive layer, and then the inter-layer dielectric layer, the conductive layer and the insulating layer are patterned to form an opening that exposes the source/drain region. Finally, a conventional method is used to form another insulating layer over the exposed conductive layer in order to prevent direct contact with subsequently formed metallic contacts inside the opening.
Abstract:
A retrograde ESD (electrostatic discharge) protection apparatus is disclosed. In a MOSFET (metal-oxide-semiconductor field effect transistor) having a source region, a drain region, a gate region, and a LDD (Lightly-Doped Drain) region, the ESD protection regions are implanted using heavy doped method under LDD region such that the implantation profile is optimized. The optimized profile is that the concentration of ESD protection region is heaviest at the source/drain junction region.
Abstract:
A bi-directional transistor structure is provided, which can help solve the problem of degraded performance due to hot carrier injection (HCI) effect that is otherwise prominent in conventional bi-directional transistors. This bi-directional transistor structure includes the following: a first diode element whose negative end is connected to the first I/O port and whose positive end is connected to a first node; a first MOS transistor element whose first source/drain electrode is connected to the first node connected to the positive end of the first diode element, whose second source/drain electrode is connected to the second I/O port and whose gate is connected to a second node; a second diode element whose negative end is connected to the second I/O port and whose positive end is connected to a third node; and a second MOS transistor element whose first source/drain electrode is connected to the first I/O port, whose second source/drain electrode is connected to the third node connected to the positive end of the second diode element and whose gate is connected to the second node connected to the gate of the first MOS transistor element. In the foregoing bi-directional transistor structure, the first and second MOS transistor elements can be either NMOS transistors or PMOS transistors. This bi-directional transistor structure has an advantage over the prior art since two different routes are provided for the directional operations, which can help prevent the unsymmetrical HCI effect.
Abstract:
A layout design for an electrostatic discharge protection device formed above a first type of semiconductor substrate. This electrostatic discharge protection device comprises a gate region having a tortuous but continuous structure located above the first type semiconductor substrate, a common source region in the first type semiconductor substrate located on one side of the gate region, a multiple of separate drain regions in the first type semiconductor substrate located on the other side of the gate region, a multiple of contact openings distributed over the common source region and the drain regions, and, a conductive runner having a width narrower than the drain region electrically connected to each drain region.
Abstract:
A method of fabricating a MOSFET device with a multiple T-shaped gate has the following steps. A substrate with an active region and a non-active region is provided, wherein the active region has a plurality of trenches, and the non-active region has a plurality shallow trench isolation structures. A thin insulating layer and a conducting layer are formed in the trenches. The conducting layer is defined to form a gate. The device is implanted with first ions. Then, the device is further implanted with second ions by using a mask, wherein the mask expose the trenches of the active region, and the opening of the mask is wider than the trench. The MOSFET device has at least the following structures. There is a substrate with an active region and a non-active region, wherein the active region has a plurality of trenches and the non-active region has a plurality of shallow trench isolation structures. There is a multiple T-shaped gate with a first part and a second part, wherein the first part is formed between two trenches on the substrate and the second part is formed in the trenches of the active region. There is a source/drain region with a shallow doped region and a deep doped region. The multiple T-shaped gate increases the channel width of the MOSFET device and decreases the short channel effect of the high integrity ICs.
Abstract:
An electrically erasable programmable read only flash memory having a buried floating gate structure buries the floating gate within the substrate. The source and drain regions are located beside the floating gate, and the control gate is located on the surface of the substrate and above the floating gate. In the program mode of read only flash memory based on the structure of this invention, the tunneling effect occurs between the floating gate and control gate to reduce leakage current and to raise the programming rate, which has the advantage of increasing the integration of memory cells.
Abstract:
A method of fabricating an interconnect structure having improved electromigration resistance. Two conductive lines are formed over a substrate and isolated by a dielectric layer. A contact/via array including a plurality of row contact/vias and column contact/vias are formed within the dielectric layer and electrically connect to the two conductive lines. The load resistors are respectively inserted into the two conductive lines close to the contact/via array. The load resistors are parallel to each other and disposed to its corresponding contact/via array. The load resistors having various resistances are formed by a plurality of slots with various lengths, which are filled with dielectrics. Accordingly, the current paths from one conductive line to the other conductive line through the contact/vias and the load resistors corresponding to the two conductive lines have identical equivalent resistance.
Abstract:
A method of fabricating a MOSFET device with a multiple T-shaped gate has the following steps. A substrate with an active region and a non-active region is provided, wherein the active region has a plurality of trenches, and the non-active region has a plurality shallow trench isolation structures. A thin insulating layer and a conducting layer are formed in the trenches. The conducting layer is defined to form a gate. The device is implanted with first ions. Then, the device is further implanted with second ions by using a mask, wherein the mask expose the trenches of the active region, and the opening of the mask is wider than the trench. The MOSFET device has at least the following structures. There is a substrate with an active region and a non-active region, wherein the active region has a plurality of trenches and the non-active region has a plurality of shallow trench isolation structures. There is a multiple T-shaped gate with a first part and a second part, wherein the first part is formed between two trenches on the substrate and the second part is formed in the trenches of the active region. There is a source/drain region with a shallow doped region and a deep doped region. The multiple T-shaped gate increases the channel width of the MOSFET device and decreases the short channel effect of the high integrity ICs.
Abstract:
A fabrication method for an oxide layer with reduced interface-trapped charges, which is applicable to the fabrication of a gate oxide layer of a flash memory device, is described. The method includes conducting a first inert ambient annealing process, followed by growing an oxide layer on the silicon substrate. A second inert ambient annealing process is then conducted on the oxide layer. Carbon ions are then incorporated into the interface between the oxide layer and the silicon substrate, followed by a third ambient annealing process.
Abstract:
A method is described for taking a lifetime measurement of an ultra-thin dielectric layer. In order to discover the life time of the ultra-thin dielectric layer, the measurement comprises using about one half of a stress voltage to measure a time-dependent leakage current of the ultra-thin dielectric layer.