摘要:
A method of processing a substrate comprising depositing a layer comprising amorphous carbon on the substrate and then laser annealing the substrate is provided. Optionally, the layer further comprises a dopant selected from the group consisting of nitrogen, boron, phosphorus, fluorine, and combinations thereof. In one aspect, the layer comprising amorphous carbon is an anti-reflective coating and an absorber layer that absorbs electromagnetic radiation emitted by the laser and anneals a top surface layer of the substrate.
摘要:
A method of processing a substrate comprising depositing a layer comprising amorphous carbon on the substrate and then exposing the substrate to electromagnetic radiation have one or more wavelengths between about 600 nm and about 1000 nm under conditions sufficient to heat the layer to a temperature of at least about 300° C. is provided. Optionally, the layer further comprises a dopant selected from the group consisting of nitrogen, boron, phosphorus, fluorine, and combinations thereof. In one aspect, the layer comprising amorphous carbon is an anti-reflective coating and an absorber layer that absorbs the electromagnetic radiation and anneals a top surface layer of the substrate. In one aspect, the substrate is exposed to the electromagnetic radiation in a laser annealing process.
摘要:
A method of processing a substrate comprising depositing a layer comprising amorphous carbon on the substrate and then laser annealing the substrate is provided. Optionally, the layer further comprises a dopant selected from the group consisting of nitrogen, boron, phosphorus, fluorine, and combinations thereof. In one aspect, the layer comprising amorphous carbon is an anti-reflective coating and an absorber layer that absorbs electromagnetic radiation emitted by the laser and anneals a top surface layer of the substrate.
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
摘要:
A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 μm is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.