摘要:
A method for manufacturing gallium nitride based transparent conductive oxidized film ohmic electrodes includes forming a transparent conductive film on a GaN layer, forming a transparent conductive hetero-junction of opposing electrical characteristics on a transparent conductive film on the surface of the GaN layer through an ion diffusion process, and laying a metallic thick film on the surface of the transparent conductive hetero-junction for wiring process in the later fabrication operation. Thus through the electron and hole tunneling effect in the ion diffusion process the Fermi level of the hetero-junction may be improved to form an ohmic contact electrode.
摘要:
A method for manufacturing gallium nitride based transparent conductive oxidized film ohmic electrodes includes forming a transparent conductive film on a GaN layer, forming a transparent conductive hetero-junction of opposing electrical characteristics on a transparent conductive film on the surface of the GaN layer through an ion diffusion process, and laying a metallic thick film on the surface of the transparent conductive hetero-junction for wiring process in the later fabrication operation. Thus through the electron and hole tunneling effect in the ion diffusion process the Fermi level of the hetero-junction may be improved to form an ohmic contact electrode.
摘要:
A phase-change material and a memory unit using the phase-change material are provided. The phase-change material is in a single crystalline state and includes a compound of a metal oxide or nitroxide, wherein the metal is at least one selected from a group consisting of indium, gallium and germanium. The memory unit includes a substrate; at least a first contact electrode formed on the substrate; a dielectric layer disposed on the substrate and formed with an opening for a layer of the phase-change material to be formed therein; and at least a second contact electrode disposed on the dielectric layer. As the phase-change material is in a single crystalline state and of a great discrepancy between high and low resistance states, the memory unit using the phase-changed material can achieve a phase-change characteristic rapidly by pulse voltage and avert any incomplete reset while with a low critical power.
摘要:
A phase-change material and a memory unit using the phase-change material are provided. The phase-change material is in a single crystalline state and includes a compound of a metal oxide or nitroxide, wherein the metal is at least one selected from a group consisting of indium, gallium and germanium. The memory unit includes a substrate; at least a first contact electrode formed on the substrate; a dielectric layer disposed on the substrate and formed with an opening for a layer of the phase-change material to be formed therein; and at least a second contact electrode disposed on the dielectric layer. As the phase-change material is in a single crystalline state and of a great discrepancy between high and low resistance states, the memory unit using the phase-changed material can achieve a phase-change characteristic rapidly by pulse voltage and avert any incomplete reset while with a low critical power.
摘要:
An example semiconductor wafer includes a semiconductor layer, a dielectric layer disposed on the semiconductor layer, and a layer of the metal disposed on the dielectric layer. An example method of determining an effective work function of a metal on the semiconductor wafer includes determining a surface barrier voltage of the semiconductor wafer, and determining a metal effective work function of the semiconductor wafer based, at least in part, on the surface barrier voltage.
摘要:
An example semiconductor wafer includes a semiconductor layer, a dielectric layer disposed on the semiconductor layer, and a layer of the metal disposed on the dielectric layer. An example method of determining an effective work function of a metal on the semiconductor wafer includes determining a surface barrier voltage of the semiconductor wafer, and determining a metal effective work function of the semiconductor wafer based, at least in part, on the surface barrier voltage.