Abstract:
Systems and methods for transferring a micro device or an array of micro devices to or from a substrate are disclosed. In an embodiment, a remote center robot allows on-the-fly alignment between a micro pick up array and a target substrate. The remote center robot may include a plurality of symmetric linkages that move independently and share a remote rotational center. In an embodiment, the remote rotational center may be positioned at a surface of the micro pick up array to prevent damage to the array of micro devices during transfer.
Abstract:
A compliant electrostatic transfer head and method of forming a compliant electrostatic transfer head are described. In an embodiment, a compliant electrostatic transfer head includes a base substrate, a cavity template layer on the base substrate, a first confinement layer between the base substrate and the cavity template layer, and a patterned device layer on the cavity template layer. The patterned device layer includes an electrode that is deflectable toward a cavity in the cavity template layer. In an embodiment, a second confinement layer is between the cavity template layer and the patterned device layer.
Abstract:
A compliant electrostatic transfer head and method of forming a compliant electrostatic transfer head are described. In an embodiment, a compliant electrostatic transfer head includes a cavity in a base substrate, a spring support layer on the base substrate, and a patterned device layer on the spring support layer. The spring support layer includes a spring support layer beam profile that extends over and is deflectable toward the cavity, and the patterned device layer includes an electrode beam profile that is supported by the spring support layer beam profile and extends over and is deflectable toward the cavity.
Abstract:
Systems and methods for aligning a transfer head assembly with a substrate are disclosed. In an embodiment a pivot mount is used for generating a feedback signal in a closed-loop motion control system. In an embodiment, the pivot mount includes primary spring arms and secondary spring arms extending between a pivot platform and a base of the pivot mount. The secondary spring arms are characterized by a lower stiffness than the primary spring arms, and strain sensing elements are located along the secondary spring arms.
Abstract:
Systems and methods for aligning a transfer head assembly with a substrate are disclosed. In an embodiment a pivot mount is used for generating a feedback signal in a closed-loop motion control system. In an embodiment, the pivot mount includes a plurality of spring arms, with each spring arm including a switch-back along an axial length of the spring arm such that a pair of first and second lengths of the spring arm are immediately adjacent the switch-back and are parallel to each other. A first strain sensing element is located at the first length, and a second strain sensing element is located at the second length.
Abstract:
A compliant electrostatic transfer head and method of forming a compliant electrostatic transfer head are described. In an embodiment, a compliant electrostatic transfer head includes a cavity in a base substrate, a spring support layer on the base substrate, and a patterned device layer on the spring support layer. The spring support layer includes a spring support layer beam profile that extends over and is deflectable toward the cavity, and the patterned device layer includes an electrode beam profile that is supported by the spring support layer beam profile and extends over and is deflectable toward the cavity.
Abstract:
Systems and methods for transferring a micro device or an array of micro devices to or from a substrate are disclosed. In an embodiment, a remote center robot allows on-the-fly alignment between a micro pick up array and a target substrate. The remote center robot may include a plurality of symmetric linkages that move independently and share a remote rotational center. In an embodiment, the remote rotational center may be positioned at a surface of the micro pick up array to prevent damage to the array of micro devices during transfer.
Abstract:
Systems and methods for aligning a transfer head assembly with a substrate are disclosed. In an embodiment a pivot mount is used for generating a feedback signal in a closed-loop motion control system. In an embodiment, the pivot mount includes primary spring arms and secondary spring arms extending between a pivot platform and a base of the pivot mount. The secondary spring arms are characterized by a lower stiffness than the primary spring arms, and strain sensing elements are located along the secondary spring arms.
Abstract:
Systems and methods for aligning a transfer head assembly with a substrate are disclosed. In an embodiment a pivot mount is used for generating a feedback signal in a closed-loop motion control system. In an embodiment, the pivot mount includes a plurality of spring arms, with each spring arm including a switch-back along an axial length of the spring arm such that a pair of first and second lengths of the spring arm are immediately adjacent the switch-back and are parallel to each other. A first strain sensing element is located at the first length, and a second strain sensing element is located at the second length.