Abstract:
The present invention provides a method for flip chip packaging co-design. The method comprises steps of: providing an I/O pad information of a chip and a connection information of a PCB; performing a first I/O pad placement according to the I/O pad information of the chip and the connection information of the PCB; utilizing a RDL routing analysis device to perform a bump pad pitch analysis for the first I/O pad placement of the chip to generate a bump pad pitch analysis result; performing a bump pad planning for a package according to the bump pad pitch analysis result to generate a bump pad planning result; and performing a second I/O pad placement for the chip according to the bump pad planning result to generate an I/O pad placement result.
Abstract:
The present invention provides a method for flip chip packaging co-design. The method comprises steps of: providing an I/O pad information of a chip and a connection information of a PCB; performing a first I/O pad placement according to the I/O pad information of the chip and the connection information of the PCB; utilizing a RDL routing analysis device to perform a bump pad pitch analysis for the first I/O pad placement of the chip to generate a bump pad pitch analysis result; performing a bump pad planning for a package according to the bump pad pitch analysis result to generate a bump pad planning result; and performing a second I/O pad placement for the chip according to the bump pad planning result to generate an I/O pad placement result.
Abstract:
The present invention provides a flip chip scheme and a method of forming the flip chip scheme. The flip chip scheme comprises: a plurality of bumps, some of the bumps arranged in a first pattern, respectively, and some of the bumps arranged in a second pattern different from the first pattern, respectively; wherein the first pattern is an equilateral triangle arranged by three bumps, and the second pattern is a square arranged by four bumps. The method comprises: arranging some of the bumps in a first pattern, respectively, and arranging some of the bumps in a second pattern different from the first pattern, respectively; wherein the first pattern is an equilateral triangle arranged by three bumps, and the second pattern is a square arranged by four bumps.
Abstract:
A method for co-designing a flip-chip and an interposer is provided. Information regarding I/O pads, power pins and IR constraints of the flip-chip is obtained. A bump planning procedure is performed to obtain a total number of micro bumps of the flip-chip according to the information, and obtain a minimum conductance of each of the power pins of the flip-chip according to a bump placement of the micro bumps of the flip-chip. A chip-interposer routing procedure is performed to obtain a Re-Distribution Layer (RDL) routing of the flip-chip and an interposer routing of the interposer according to the minimum conductance of the power pins of the flip-chip.
Abstract:
The present invention provides a method for flip chip packaging co-design. The method comprises steps of: providing an I/O pad information of a chip and a connection information of a PCB; performing a first I/O pad placement according to the I/O pad information of the chip and the connection information of the PCB; utilizing a RDL routing analysis device to perform a bump pad pitch analysis for the first I/O pad placement of the chip to generate a bump pad pitch analysis result; performing a bump pad planning for a package according to the bump pad pitch analysis result to generate a bump pad planning result; and performing a second I/O pad placement for the chip according to the bump pad planning result to generate an I/O pad placement result.
Abstract:
The present invention provides a flip chip scheme and a method of forming the flip chip scheme. The flip chip scheme comprises: a plurality of bumps, some of the bumps arranged in a first pattern, respectively, and some of the bumps arranged in a second pattern different from the first pattern, respectively; wherein the first pattern is an equilateral triangle arranged by three bumps, and the second pattern is a square arranged by four bumps. The method comprises: arranging some of the bumps in a first pattern, respectively, and arranging some of the bumps in a second pattern different from the first pattern, respectively; wherein the first pattern is an equilateral triangle arranged by three bumps, and the second pattern is a square arranged by four bumps.
Abstract:
The present invention provides a method for flip chip packaging co-design. The method comprises steps of: providing an I/O pad information of a chip and a connection information of a PCB; performing a first I/O pad placement according to the I/O pad information of the chip and the connection information of the PCB; utilizing a RDL routing analysis device to perform a bump pad pitch analysis for the first I/O pad placement of the chip to generate a bump pad pitch analysis result; performing a bump pad planning for a package according to the bump pad pitch analysis result to generate a bump pad planning result; and performing a second I/O pad placement for the chip according to the bump pad planning result to generate an I/O pad placement result.