Abstract:
A method for producing an electrode material, provided to involve: (i) a provisional sintering step of sintering a mixed powder containing a powder of a heat resistant element and a powder of Cr to obtain a solid solution where the heat resistant element and Cr are dissolved; (ii) a pulverizing step of pulverizing the solid solution to obtain a powder; (iii) a main sintering step of sintering a molded body obtained by molding the powder of the solid solution, to produce a sintered body; and (iv) a Cu infiltration step of infiltrating the sintered body with Cu.
Abstract:
A process for producing an electrode material by infiltrating a highly conductive metal such as Cu into a porous object containing heat-resistant elements. Before an infiltration step in which the highly conductive metal is infiltrated, a HIP treatment is given to a powder containing the heat-resistant elements (or to a molded object obtained by molding a powder containing the heat-resistant elements). The composition is controlled so that the HIP treatment yields a porous object which has a degree of filling of 70% or higher, more preferably 75% or higher. The highly conductive metal is infiltrated into the porous object having the controlled composition.
Abstract:
An electrode material obtained by press molding a mixed powder where a Cu powder, a Cr powder and a refractory metal powder (for example, a Mo powder) are mixed and then sintering the thus-obtained molded body in a non-oxidizing atmosphere at a temperature that is not higher than the melting point of Cu. As the Cr powder to be mixed in the mixed powder, a Cr powder wherein the volume-based relative particle amount of particles having particle diameters of 40 μm or less is less than 10% is used. The Cr powder is mixed in the mixed powder in an amount of 10-50% by weight, while the refractory metal powder is mixed in the mixed powder in an amount of 1-10% by weight.
Abstract:
Disclosed is a vacuum circuit breaker (1) including a vacuum interrupter (3) accommodated in a ground tank (2) filled with insulating gas. At least one of a fixed electrode (10) and a movable electrode (11) of the vacuum interrupter (3) uses an electrode material in which particles containing a solid solution of a heat resistant element and Cr are finely and uniformly dispersed and in which Cu textures as a high conductive component are finely and uniformly dispersed. The electrode material contains 20 to 70% by weight of Cu, 1.5 to 64% by weight of Cr and 6 to 76% by weight of the heat resistant element relative to a weight of the electrode material. The particles of the solid solution in the electrode material have an average particle size of 20 μm or smaller.
Abstract:
It is an electrode material that is used as an electrode contact of a vacuum interrupter and that contains one or more parts by weight of a heat-resistant element and one part by weight of Cr, the remainder being Cu and an unavoidable impurity. A part of Cr powder and the heat-resistant element powder are mixed together, and this mixed powder is sintered such that a peak corresponding to Cr element disappears in X-ray diffraction measurement. A solid solution powder obtained by pulverizing a sintered body of the heat-resistant element and Cr obtained by the sintering is mixed with the remaining Cr powder, and this mixed powder is shaped and then sintered. A sintered body obtained by this sintering is infiltrated with Cu.
Abstract:
It is a method for manufacturing an electrode material containing Cu, Cr, a heat-resistant element, and a low melting metal. A Cr powder and a heat-resistant element powder are mixed together in a ratio such that the Cr is greater than the heat-resistant element by weight. The mixed powder of the heat-resistant element and the Cr powder is baked. A MoCr solid solution obtained by the baking and containing a solid solution of the heat-resistant element and the Cr is pulverized and then classified. The classified MoCr solid solution powder, a Cu powder, and a low-melting metal powder are mixed together, followed by sintering at a temperature that is 1010° C. or higher and is lower than 1038° C., thereby obtaining the electrode material.
Abstract:
What is disclosed is an electrode material including a sintered body containing a heat resistant element and Cr and being infiltrated with a highly conductive material. A powder mixture of a heat resistant element powder and a Cr powder is subjected to a provisional sintering in advance, thereby causing solid phase diffusion of the heat resistant element and Cr. After a Mo—Cr solid solution obtained by the provisional sintering is pulverized, the pulverized Mo—Cr solid solution powder is molded and sintered. A sintered body obtained by sintering is subjected to a HIP treatment. The highly conductive metal is disposed on the sintered body after the HIP treatment, and infiltrated into the sintered body by heating at a predetermined temperature. By conducting the HIP treatment, the withstand voltage capability and current-interrupting capability of the electrode material are improved.
Abstract:
There is disclosed a method for manufacturing an electrode by pressing and sintering a mixed powder of a solid solution powder of Cr and a heat-resistant element, which contains Cr and the heat-resistant element in a ratio such that Cr is greater than the heat-resistant element by weight, a Cu powder, and a low melting metal powder (Bi, Sn, Se, Pb, etc.). The low melting metal powder of 0.30 weight % to 0.50 weight % is added to a mixed powder of a solid solution powder of Cr and the heat-resistant element and the Cu powder, and then a mixed powder prepared by adding the low melting metal powder is sintered at a temperature of from 1010° C. to 1035° C. As the low melting metal powder, there is used a powder having a median size of from 5 μm to 20 μm.
Abstract:
It is a method for producing an electrode material containing Cu, Cr and a heat-resistant element. A heat-resistant element powder and a Cr powder are mixed together in a ratio such that the heat-resistant element is less than the Cr by weight. A mixed powder of the heat-resistant element powder and the Cr powder is baked. A sintered body obtained by the baking and containing a solid solution of the heat-resistant element and the Cr is pulverized, and a solid solution powder obtained by the pulverizing is classified, to have a particle size of 200 μm or less. 10-60 parts by weight of the classified solid solution powder and 90-40 parts by weight of a Cu powder are mixed together, followed by sintering to obtain the electrode material. If a low melting metal powder having a median size of 5-40 μm is mixed with a mixed powder of the solid solution powder and the Cu powder, the deposition resistance property is further improved.
Abstract:
An electrode material wherein Cr-containing particles are finely miniaturized and uniformly dispersed while a Cu portion, which is highly conductive component, is also finely miniaturized and uniformly dispersed. The electrode material is prepared, for example, by: a mixing step (S1) for mixing a Cr powder and a heat resistant element powder; a provisional sintering step (S2) for provisionally sintering the mixed powder to obtain a solid solution of Cr and the heat resistant element; a pulverizing step (S3) for pulverizing the solid solution of Cr and the heat resistant element to obtain a solid solution powder of Cr and the heat resistant element; a molding step (S4) for molding the solid solution powder; a main sintering step (S5) for performing main sintering of the obtained molded body to obtain a sintered body (skeleton) of Cr and the heat resistant element; and a Cu infiltration step (S6) for infiltrating the sintered body of Cr and the heat resistant element with Cu.A method for producing an electrode material, involving: (i) a step of preparing a powder of a solid solution of Cr and a heat resistant material selected from the group consisting of Mo, W, Ta, Nb, V and Zr, wherein either a peak corresponding to Cr element or a peak corresponding to the heat resistant element, which are observed by X ray diffraction measurement made on the powder of the solid solution, disappears; (ii) a step of molding the powder of the solid solution to obtain a molded body and then sintering the molded body to produce a sintered body; and (iii) a Cu infiltration step of infiltrating the sintered body with Cu.