Abstract:
An apparatus includes a debugger circuit, debug pins, and a test controller circuit. The test controller circuit is configured to, in a programming mode, determine a subset of the debug pins used in programming the apparatus. The test controller circuit is further configured to save a designation of the subset of the debug pins. The test controller circuit is further configured to, in a test mode subsequent to the programming mode, use the designation to route the subset of the debug pins used in programming the apparatus to the debugger circuit for debug input and output with the server.
Abstract:
An inductor-inductor-capacitor (LLC) power converter includes a current input interface to receive a current input indication. The current input indication includes a voltage to represent a current passing through of a primary side of the LLC power converter. The LLC power converter includes voltage input interface to receive a voltage input. The voltage input is to include a representative voltage to be provided from a secondary side of the LLC power converter. The LLC power converter includes a control circuit to generate pulsed-width modulation (PWM) control signals for the LLC power converter. The control circuit is to match an on-time period of a first leg and a second leg of the LLC power converter and based upon the current input indication and the voltage input.
Abstract:
A temperature-compensating clock frequency monitor circuit may be provided to detect a clock pulse frequency in an electronic device that may cause erratic or dangerous operation of the device, as a function of an operating temperature of the device. The temperature-compensating clock frequency monitor circuit include a temperature sensor configured to measure a temperature associated with an electronic device, a clock having an operating frequency, and a frequency monitoring system. The frequency monitoring system may be configured to determine the operating frequency of the clock, and based at least on (a) the operating frequency of the clock and (b) the measured temperature associated with the electronic device, generate a corrective action signal to initiate a corrective action associated with the electronic device or a related device. The temperature sensor, clock, and frequency monitoring system may, for example, be provided on a microcontroller.
Abstract:
A semiconductor die includes a feedback path coupled to the output pin, and an integrity monitor circuit (IMC). The output pin is communicatively coupled to the logic. The IMC is configured to receive a data value. The IMC is further configured to receive measured data value from the output pin routed through the feedback path, compare the data value and the measured data value, and, based on the comparison, determine whether an error has occurred.
Abstract:
A serial transmission peripheral device for transmitting serial transmission data with a variable data length includes a pulse forming unit; and a register programmable to set a desired transmission length. The peripheral device is operable to determine an actual transmission length and calculate a length of a pause pulse and to add the pause pulse at the end of a transmission to generate a transmission having a constant length.
Abstract:
A plurality of PWM generators have user configurable time delay circuits for each PWM control signal generated therefrom. The time delay circuits are adjusted so that each of the PWM control signals arrive at their associated power transistors at the same time. This may be accomplished by determining a maximum delay time of the PWM control signal that has to traverse the longest propagation time and then setting the delay for that PWM control signal to substantially zero delay. Thereafter, all other delay time settings for the other PWM control signals may be determined by subtracting the propagation time for each of the other PWM control signals from the longest propagation time. Thereby insuring that all of the PWM control signals arrive at their respective power transistor control nodes with substantially the same time relationships as when they left their respective PWM generators.
Abstract:
A microcontroller has a programmable timebase, wherein the timebase has a trigger input to start a timer or counter of the timebase and wherein the timebase can be configured to operate upon receiving a trigger signal in a first mode to generate a plurality of timer/counter event signals until a reset bit in a control register is set and in a second mode to generate a single timer/counter event signal and wherein the timebase can be configured to operate in a third mode to generate a predefined number of timer/counter event signals, wherein the predefined number is defined by a plurality of bits of a register.
Abstract:
An apparatus includes an adjustment circuit configured to receive a pulsed-width modulation (PWM) input, generate an adjusted PWM signal based upon the PWM input, and determine that a first pulse of the PWM input is shorter than a runt signal limit. The adjustment circuit is further configured to, in the adjusted PWM signal, extend the first pulse of the PWM input based on the determination that the PWM input is shorter than the runt signal limit, and output the adjusted PWM signal to an electronic device.
Abstract:
A microcontroller has a plurality of peripherals, and at least one control bit, wherein the control bit controls a reset of at least one peripheral such that in a first mode any type of reset resets the at least one peripheral of said plurality of peripherals and in a second mode only a power supply reset resets the at least one peripheral.
Abstract:
A system for determining a unit time of a serial transmission protocol, wherein the serial transmission protocol defines a unit time (UT) by transmitting a calibration pulse having a predetermined length of N*UT and wherein a receiver is operated by system clock, includes: a clock divider for dividing the system dock by M, wherein M evenly divides N, and a detector for sampling a received data nibble length by using a dithered sampling clock.