Abstract:
A heat-treatment apparatus includes a casing, a loader which loads a workpiece to an inner part of the casing in order to apply a heat-treatment to the workpiece, and a canopy surface provided in the casing to cover the workpiece. The canopy surface includes a slope way with a sectional configuration where the canopy surface is cut on a plane vertical to a conveying direction of the workpiece inside the casing. The slope way includes a highest point and a downward inclined surface extending from the highest point to an outside of a zone between a perpendicular line extending from a left end of the workpiece and a perpendicular line extending from a right end of the workpiece.
Abstract:
A method of manufacturing a stacked stator core comprises forming a stack that comprises an annular yoke portion, a plurality of tooth portions, and a plurality of slots. The method further comprises inserting a mold core member of the plurality of mold core members into a slot of the plurality of slots, the mold core member comprising a body portion and a closing portion connected to the body portion, the body portion extending along a longitudinal direction of the slot and spaced apart from an inner wall surface of the slot, the closing portion being positioned on a slot opening side of the slot and closing an open end portion of the slot on the slot opening side. Additionally, the method comprises forming a resin portion by charging a melted resin into a filling space between the slot and the mold core member.
Abstract:
In a cross sectional plane perpendicular to a center axis line of an annular core, a connection projection and a connection recess have complementary configurations in which the connection projection and the connection recess are narrowed in width with distance from coupling surfaces, the connection projection and the connection recess respectively include a pair of friction surfaces and a pair of friction surfaces extending in a direction separate from the coupling surfaces, the friction surface of the connection projection is inclined relative to a virtual normal line perpendicular to a line connecting bottom portions of the pair of friction surfaces of the connection projection, and the friction surface of the connection recess is inclined relative to a virtual normal line perpendicular to a line connecting bottom portions of the pair of friction surfaces of the connection recess.
Abstract:
A laminated iron core includes laminated iron core pieces, in which coupling parts are formed so as to communicate in a lamination direction of the laminated iron core pieces, and the coupling parts are filled with resins. The laminated iron core satisfies the following formula: (T×S)/η>{(4×E×δ×w×t3)/L3}×n, where T is a strength (N/mm2) of the resin; S is a cross-sectional area (mm2) of the coupling part or the resin; E is a Young's modulus (N/mm2) of the strip material; δ is a distortion amount (mm) of the iron core piece; w is a width (mm) of the iron core piece in a radial direction; t is a plate thickness (mm) of the iron core piece; n is the number of laminated iron core pieces; L is a distance (mm) between the coupling parts adjacent in the circumferential direction; and η is a safety factor.
Abstract:
A method for manufacturing a laminated core includes a laminating process of obtaining a laminate in which a plurality of core pieces are laminated, and a welding process of forming a weld bead which extends in a thickness direction of the laminate on a side surface of the laminate. In the welding process, a heat input when a center portion in a longitudinal direction of the weld bead is formed is greater than a heat input when an end portion of the weld bead is formed.
Abstract:
A method for manufacturing a segmented laminated core is provided. This method includes (A) feeding a metal sheet to a progressive die, (B) stamping out workpieces in the progressive die, workpieces each include a plurality of pieces aligned in the circumferential direction with a circumferential part, and (C) fastening the workpieces together to obtain a segmented laminated core. The step (B) includes (b1) performing cutting-and-bending processing to form a slit line and a bending line across a region configured to be the circumferential part, (b2) returning by push-back a bent part that is a portion between the slit line and the bending line to an original position, and (b3) forming a swaged portion on the bent part. The step (C) includes (c1) fastening the workpieces by the swaged portion.
Abstract:
This disclosure relates to a method for manufacturing a workpiece for a segmented laminated core. This method includes (A) feeding a plate for processing drawn from a roll thereof to a progressive die and (B) stamping out a workpiece in the progressive die, the workpiece including a plurality of pieces aligned in the circumferential direction with a circumferential part. At the step (B), an overall portion configured to be each piece of the workpiece is displaced in the thickness direction of the plate for processing, with portions on both sides of the piece being fixed, to form at least one cutting line across a region configured to be the circumferential part.
Abstract:
This disclosure relates to a method for manufacturing a laminate used for manufacturing a laminated core including a circumferential yoke part and a plurality of magnetic pole parts radially extending from the yoke part. This method includes: feeding a metal sheet drawn from a roll thereof to a progressive die; stamping out a plurality of workpieces from the metal sheet in the progressive die, wherein each of the workpiece comprises a temporarily-interlocking portion between adjacent magnetic pole portions; and stacking the workpieces to integrate these workpieces together by the temporarily-interlocking portion to obtain the laminate.
Abstract:
The disclosure relates to a method for manufacturing a laminate used for manufacturing a rotor, the method includes: (a) stamping out a plurality of workpieces from a metal sheet wherein each of the workpieces has a temporarily-interlocking portion; and (b) obtaining a laminate including the workpieces integrated together by the temporarily-interlocking portion, wherein each of the workpieces further has a shaft hole, a magnet insertion hole, and a weight-reducing hole formed between the shaft hole and the magnet insertion hole, and the temporarily-interlocking portion is provided to the weight-reducing hole.
Abstract:
In a laminated iron core formed by laminating a plurality of iron core pieces, at least one of an inner circumferential portion or an outer circumferential portion of the iron core piece is provided with a connection recess part which is connected with a connection part of a caulking piece detachable in a radial direction from the connection recess part, an outer circumferential edge of the connection part has the same shape as an inner circumferential edge of the connection recess part, and a bottom portion of the connection recess part is not configured by a single straight line.