Abstract:
A measuring force includes a stem, an arm, a detector, a rotation fulcrum, and a measuring force adjuster. A probe which makes contact with a workpiece is provided on the stem. An end portion of the arm is joined to the stem. The rotation fulcrum acts as a fulcrum for a rotating motion of the stem and the arm. The detector detects a displacement amount of the rotating motion of the arm. A crossed spring of the rotation fulcrum imparts on the stem and the arm a torque around an axis of the rotating motion in accordance with the displacement amount of the rotating motion. The measuring force adjuster imparts on the arm and the stem a torque, in a reverse direction of the torque generated by the crossed spring, by an attraction force generated by a magnetic force between at least two magnetic members mutually arranged at opposite ends.
Abstract:
A double cone stylus includes a shank and a double cone-shaped tip attached to the tip end of the shank, the double cone-shaped tip being a rotationally symmetric body obtained by rotating a triangle having a base extending along the shank around the shank as the symmetric rotation axis. The double cone stylus allows the shape of an inner wall surface of a measurement object with the inner wall surface retracted from an upper reference plane to be measured from above.
Abstract:
A measurement apparatus includes a sensor that measures a workpiece, a multi-axis robot that moves the sensor in a three-dimensional space, a position determination part that determines i) a plurality of measurement positions that are positions along a normal direction at each of a plurality of positions to be measured on the workpiece and ii) a direction of the sensor at each of the plurality of measurement positions on the basis of at least either design data or captured image data indicating the geometry of the workpiece, a moving control part that sequentially moves the sensor to the plurality of measurement positions by controlling the robot, and a measurement control part that outputs measured data indicating a result that the sensor measured at each of the plurality of measurement positions in association with the plurality of positions to be measured.
Abstract:
A measuring head includes a first slide mechanism for a first measurement axis provided to be detachable to external moving devices; a second slide mechanism for a second measurement axis held to be movable by the first slide mechanism; a third slide mechanism for a third measurement axis held to be movable by the second slide mechanism; a probe held to be movable by the third slide mechanism; pneumatic cylinders for connecting slider parts and guide parts included in each slide mechanism; and automatic pressure regulators for respectively changing air pressures supplied to each pneumatic cylinder in accordance with measurement postures of the measuring head.
Abstract:
A measuring probe includes a stylus having a contact part to be in contact with an object to be measured, an axial motion mechanism having a moving member that allows the contact part to move in an axial direction, and a rotary motion mechanism having a rotating member that allows the contact part to move along a plane perpendicular to the axial direction by means of rotary motion. The measuring probe includes a main body housing that supports the axial motion mechanism, a module housing that supports the rotary motion mechanism, and a displacement detector supported by the main body housing for detecting displacement of the moving member. The measuring probe with this configuration ensures high measurement accuracy while keeping a low cost.
Abstract:
A lever-type measuring machine swinging around a supporting point includes a stylus measuring a shape of a measured object, an arm having a first end connected to the stylus and a second end connected to the supporting point, and a balancer having a first end connected to the supporting point. The balancer is formed of a material having high specific flexural rigidity. The lever-type measuring machine enables more accurate measurement.
Abstract:
A measuring probe includes a stylus, an axial motion mechanism, and a rotary motion mechanism. The axial motion mechanism includes a pair of first diaphragm structures that allows a moving member to be displaced, and the rotary motion mechanism includes a second diaphragm structure that allows a rotating member to be displaced. The second diaphragm structure is disposed between the pair of first diaphragm structures in an axial direction. The respective first diaphragm structures are disposed at a symmetric distance with respect to the second diaphragm structure. This can reduce the length in the axial direction and weight thereof and also reduce shape errors and improve measurement accuracy.
Abstract:
A form measuring instrument includes: a contact tip configured to contact with a workpiece; a movement mechanism configured to cause relative movement of the contact tip with respect to the workpiece; a movement controlling unit configured to control the movement mechanism; a contact sensor configured to detect a contact amount of the contact tip with the workpiece and output a detection signal corresponding to the contact amount; and an abnormality determining unit configured to determine an abnormality of sensitivity of the contact sensor based on a change in the detection signal outputted from the contact sensor during an operation of the movement mechanism in which the contact tip is pressed against the workpiece.
Abstract:
A measuring probe includes a stylus having a contact part, an axial motion mechanism, and a rotary motion mechanism. The axial motion mechanism includes first diaphragm structures and a moving member that allows the contact part to move in an axial direction. The rotary motion mechanism includes a second diaphragm structure and a rotating member that allows the contact part to move along a plane perpendicular to the axial direction. The first diaphragm structures are disposed at a symmetric distance with respect to the second diaphragm structure, and the second diaphragm structure is disposed between the first diaphragm structures in the axial direction. The axial motion mechanism supports the rotary motion mechanism, or the rotary motion mechanism supports the axial motion mechanism.
Abstract:
A stylus support portion moveable in an X direction is arranged separate from a fixed portion. A plate spring has a first end fixated to an end portion of the stylus support portion in an X (+) direction, a second end fixated to the fixed portion, and a principal surface facing the X direction. A plate spring has a first end fixated to an end portion of the stylus support portion in an X (−) direction, a second end fixated to the fixed portion, and a principal surface facing the X direction. A first permanent magnet is provided on the end portion of the stylus support portion in the X (+) direction. A second permanent magnet is provided on the end portion of the stylus support portion in the X (−) direction. A third permanent magnet is provided to the fixed portion so that a magnetic force in the X direction acts on an area between the first permanent magnet and the third permanent magnet. A fourth permanent magnet is provided to the fixed portion so that the magnetic force in the X direction acts on an area between the second permanent magnet and the fourth permanent magnet.