Abstract:
A thermoelectric material comprising a Group IV element boride doped with one of the Group III, IV, or V elements, wherein the doping element is different from the Group IV element in the Group IV element boride, and the doping element is not boron. A method of fabricating a thermoelectric material including the steps of: providing a Group IV element boride, and doping the Group IV element boride with a doping element chosen from one of the column III, IV, or V elements, wherein the doping element is different from the Group IV element in the Group IV element boride, and the doping element is not boron. An alternate method of fabricating a thermoelectric material is also disclosed including the steps of simultaneously growing on a substrate a Group IV element boride and at least one doping element chosen from one of the Group III, IV, or V elements wherein the doping element is different than the Group IV element in the Group IV element boride and the doping element is not boron.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. The compliant substrate includes an accommodating buffer layer comprising a layer of monocrystalline oxide having a niobium concentration that provides for substantial lattice matching of the accommodating buffer layer to the overlying monocrystalline material layer. The monocrystalline oxide of the accommodating buffer layer is selected to be lattice matched to the underlying monocrystalline substrate. The accommodating buffer layer may be spaced apart from the underlying monocrystalline substrate by an amorphous interface layer. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline accommodating buffer layer.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials. A thermo-electric device is integrated into the semiconductor structure.
Abstract:
A fuel cell device and method of forming the fuel cell device including a base portion having a major surface. At least one fuel cell membrane electrode assembly is formed on the major surface of the base portion. A water recovery and recirculation system is defined in a cap portion and in communication with a water recovery and recirculation channel defined in the base portion. The water recovery and recirculating system is formed to collect reaction water from the cathode side of the at least one fuel cell membrane electrode assembly for recirculation to the anode side of the fuel cell membrane electrode assembly. An exhaust separation chamber is defined in the base portion and communicating with the fuel cell membrane electrode assembly for the exhausting of generated gases.