Abstract:
A system and method for determining a microwave beam and a power setting for wireless power transfer within a volume with a beamforming antenna. The method includes determining a perimeter for the volume, and determining a transmit power threshold based on the perimeter. The method includes establishing a communication link with a mobile electronic device within the volume, and determining a position of the mobile electronic device. The method includes sensing whether a person is located within the volume, and, when a person is located within the volume, sensing a position of the person, determining a microwave beam based on the position of the mobile electronic device and the position of the person, and determining a power setting for the microwave beam based on the position of the mobile electronic device, the position of the person, the transmit power threshold, and a power density distribution for the microwave beam.
Abstract:
A system and method for wireless power transfer. The system includes a transmit coil having a first magnetic field having a first magnitude. The system also includes a receive coil, magnetically coupled to the transmit coil, having a second magnetic field having a second magnitude. The system also includes an electronic processor electrically coupled to the transmit coil and communicatively coupled to the receive coil. The electronic processor is configured to determine the first magnitude of the first magnetic field. The electronic processor is further configured to receive the second magnitude of the second magnetic field. The electronic processor is further configured to determine an efficiency based on the first magnitude and the second magnitude, and determine a power level for the transmit coil based on the efficiency.
Abstract:
An antenna system. The antenna system includes a central antenna, and a plurality of peripheral antennas positioned symmetrically around the central antenna. A first coupler provides a first radio connection and a second radio connection. A first 180 degree hybrid coupler is coupled to a first two diametrically opposed antennas of the plurality of peripheral antennas. A second 180 degree hybrid coupler is coupled to a second two diametrically opposed antennas of the plurality of peripheral antennas. A third 180 degree hybrid coupler coupled to the first and second 180 degree hybrid couplers, and having a third radio connection and a fourth radio connection. The first, second, third, and fourth radio connections are decoupled from each other, and the first, second, and third system radio connections are also decoupled from the central antenna.
Abstract:
An antenna system. The antenna system includes a central antenna, and a plurality of peripheral antennas positioned symmetrically around the central antenna. A first coupler provides a first radio connection and a second radio connection. A first 180 degree hybrid coupler is coupled to a first two diametrically opposed antennas of the plurality of peripheral antennas. A second 180 degree hybrid coupler is coupled to a second two diametrically opposed antennas of the plurality of peripheral antennas. A third 180 degree hybrid coupler coupled to the first and second 180 degree hybrid couplers, and having a third radio connection and a fourth radio connection. The first, second, third, and fourth radio connections are decoupled from each other, and the first, second, and third system radio connections are also decoupled from the central antenna.
Abstract:
A system and method for wireless power transfer. The system includes a transmit coil having a first magnetic field having a first magnitude. The system also includes a receive coil, magnetically coupled to the transmit coil, having a second magnetic field having a second magnitude. The system also includes an electronic processor electrically coupled to the transmit coil and communicatively coupled to the receive coil. The electronic processor is configured to determine the first magnitude of the first magnetic field. The electronic processor is further configured to receive the second magnitude of the second magnetic field. The electronic processor is further configured to determine an efficiency based on the first magnitude and the second magnitude, and determine a power level for the transmit coil based on the efficiency.
Abstract:
A method, mobile station, and user-based communication system are provided that determine that a mobile station intends to transmit over an uplink, determine whether the mobile station is being operated in a body-worn position, determine an uplink transmit power scale factor, and when the mobile station is being operated in a body-worn position, apply the uplink transmit power scale factor to an uplink transmit power to produce a scaled uplink transmit power. In one embodiment, the user-based communication system includes the mobile station and an audio accessory and determines whether the mobile station is being operated in a body-worn position based on a determination of whether the audio accessory is actively engaged.
Abstract:
An antenna enables compact and robust multiband operation of portable radios. According to some embodiments, the antenna includes: a first rolled conductive strip having a first section with overlap between successive turns of the first conductive strip and a second section with no overlap between successive turns of the first conductive strip, the first section having an insulating layer between the overlapping successive turns of the first conductive strip; a second rolled conductive strip; and a flexible sheet to which both the first conductive strip and the second conductive strip are bonded.
Abstract:
A system including a base affixed to a radio. The base includes a first base connector and a second base connector with a plurality of radial interconnectors positioned around the perimeter of the first base connector. The system includes an antenna connector including a first antenna connector and a second antenna connector with a plurality of radial interconnectors positioned around the perimeter of the first antenna connector. The first base connector is connected to the first antenna connector to form a central radio frequency (RF) coaxial connection and a first transmission line for a first antenna. The second antenna connector is connected to the second base connector to form a second transmission line and a plurality of radial connections around the perimeter of the central RF coaxial connection. The plurality of radial connections is configured to function as a signal carrier and/or an additional RF element.