Abstract:
A directional vehicular spotlight (100) is provided with a plurality of radar sensors (150) and at least one non-radar sensor (160). The plurality of radar sensors (150) provide field of view coverage in at least forward, first and second sides, and rear directions of the directional spotlight. The non-radar sensor (160) detects orientation of the directional spotlight (100). The plurality of radar sensors (150) and the at least one non-radar sensor (160) provide ingress detection across a predetermined vehicular perimeter threshold.
Abstract:
A method, system and computer program product for intelligent tracking and transformation between interconnected sensor devices of mixed type is disclosed. Metadata derived from image data from a camera is compared to different metadata derived from radar data from a radar device to determine whether an object in a Field of View (FOV) of one of the camera and the radar device is an identified object that was previously in the FOV of the other of the camera and the radar device.
Abstract:
A method, system and computer program product for intelligent tracking and transformation between interconnected sensor devices of mixed type is disclosed. Metadata derived from image data from a camera is compared to different metadata derived from radar data from a radar device to determine whether an object in a Field of View (FOV) of one of the camera and the radar device is an identified object that was previously in the FOV of the other of the camera and the radar device.
Abstract:
A process for identifying a person, object, or entity (POE) of interest outside of a moving vehicle includes first receiving, from a camera coupled to the vehicle, a video stream having a field-of-view (FOV) of an area surrounding the vehicle. A first trigger is detected associated with a vehicle occupant's indicated desire to capture a portion of the video stream. A selected FOV sub-portion of the video stream less than then an entire captured FOV of the video stream is identified as a function of the trigger or a separate electronic sensor input. A second trigger is detected indicative of the vehicle occupant's indicated desire to stop capturing the portion of the video stream. The video stream is then sub-selected in time and FOV as a function of the foregoing to create a second modified video stream and provided to a target device for display.
Abstract:
Tendency detecting and analysis in support of generating one or more workflows via user interface interactions is disclosed. In accordance with the user interface interactions, processing user selection of one or more icons may generate at least one user-selectable option within a graphical user interface, where the user-selectable option corresponds to at least one workflow action. The workflow action may relate to an identified tendency of a person or a group of people.
Abstract:
A communication system (200) comprises a radio communication device (100) comprising a controller (102) having law enforcement information (110) stored therein and a data acquisition device (108) for capturing area conditions surrounding a law enforcement vehicle or law enforcement personnel. The controller (102) detects violations of the law enforcement information based on variety of detection devices, such as video analytics. In response to a detection of a law violation by an offending vehicle, a transmitter (104) within communication device 100 generates an alert to similarly formed secondary devices (220) mounted and/or worn within the network. The system (200) provides an automated response through devices (220) by gathering additional data pertaining to the offending vehicle to detect for additional violations of the law, even across state lines. The system (200) may further facilitate apprehension of an offending vehicle through automated roadblocks.