摘要:
By removing material during the formation of trench openings of isolation structures in an SOI device, the subsequent implantation process for defining the well region for a substrate diode may be performed on the basis of moderately low implantation energies, thereby increasing process uniformity and significantly reducing cycle time of the implantation process. Thus, enhanced reliability and stability of the substrate diode may be accomplished while also providing a high degree of compatibility with conventional manufacturing techniques.
摘要:
By removing material during the formation of trench openings of isolation structures in an SOI device, the subsequent implantation process for defining the well region for a substrate diode may be performed on the basis of moderately low implantation energies, thereby increasing process uniformity and significantly reducing cycle time of the implantation process. Thus, enhanced reliability and stability of the substrate diode may be accomplished while also providing a high degree of compatibility with conventional manufacturing techniques.
摘要:
Material erosion of trench isolation structures in advanced semiconductor devices may be reduced by incorporating an appropriate mask layer stack in an early manufacturing stage. For example, a silicon nitride material may be incorporated as a buried etch stop layer prior to a sequence for patterning active regions and forming a strain-inducing semiconductor alloy therein, wherein, in particular, the corresponding cleaning process prior to the selective epitaxial growth process has been identified as a major source for causing deposition-related irregularities upon depositing the interlayer dielectric material.
摘要:
Material erosion of trench isolation structures in advanced semiconductor devices may be reduced by incorporating an appropriate mask layer stack in an early manufacturing stage. For example, a silicon nitride material may be incorporated as a buried etch stop layer prior to a sequence for patterning active regions and forming a strain-inducing semiconductor alloy therein, wherein, in particular, the corresponding cleaning process prior to the selective epitaxial growth process has been identified as a major source for causing deposition-related irregularities upon depositing the interlayer dielectric material.
摘要:
When forming sophisticated gate electrode structures requiring a threshold adjusting semiconductor alloy for one type of transistor, a recess is formed in the corresponding active region, thereby providing superior process uniformity during the deposition of the semiconductor material. Moreover, the well dopant species is implanted after the recessing, thereby avoiding undue dopant loss. Due to the recess, any exposed sidewall surface areas of the active region may be avoided during the selective epitaxial growth process, thereby significantly contributing to enhanced threshold stability of the resulting transistor including the high-k metal gate stack.
摘要:
In a static memory cell, the failure rate upon forming contact elements connecting an active region with a gate electrode structure formed above an isolation region may be significantly reduced by incorporating an implantation species at a tip portion of the active region through a sidewall of the isolation trench prior to filling the same with an insulating material. The implantation species may represent a P-type dopant species and/or an inert species for significantly modifying the material characteristics at the tip portion of the active region.
摘要:
By removing an upper portion of a complex spacer structure, such as a triple spacer structure, an upper surface of an intermediate spacer element may be exposed, thereby enabling the removal of the outermost spacer and a material reduction of the intermediate spacer in a well-controllable common etch process. Consequently, sidewall portions of the gate electrode may be efficiently exposed for a subsequent silicidation process, while the residual reduced spacer provides sufficient process margins. Thereafter, highly stressed material may be deposited, thereby providing an enhanced stress transfer mechanism.
摘要:
By providing a protection layer on a silicon/germanium material of high germanium concentration, a corresponding loss of strained semiconductor material may be significantly reduced or even completely avoided. The protection layer may be formed prior to critical cleaning processes and may be maintained until the formation of metal silicide regions. Hence, high performance gain of P-type transistors may be accomplished without requiring massive overfill during the selective epitaxial growth process.
摘要:
In a static memory cell, the failure rate upon forming contact elements connecting an active region with a gate electrode structure formed above an isolation region may be significantly reduced by incorporating an implantation species at a tip portion of the active region through a sidewall of the isolation trench prior to filling the same with an insulating material. The implantation species may represent a P-type dopant species and/or an inert species for significantly modifying the material characteristics at the tip portion of the active region.
摘要:
In MOS transistor elements, a strain-inducing semiconductor alloy may be embedded in the active region with a reduced offset from the channel region by applying a spacer structure of reduced width. In order to reduce the probability of creating semiconductor residues at the top area of the gate electrode structure, a certain degree of corner rounding of the semiconductor material may be introduced, which may be accomplished by ion implantation prior to epitaxially growing the strain-inducing semiconductor material. This concept may be advantageously combined with the provision of sophisticated high-k metal gate electrodes that are provided in an early manufacturing stage.