摘要:
A denitration catalyst comprising at least three metal components, (A) titanium, (B) tungsten and/or magnesium, and (C) vanadium, the titanium and tungsten being contained as oxides and the magnesium and vanadium being contained in the form of an oxide or a sulfate or both, said catalyst being composed of a porous molded article of a mixture of an oxide of component A and an oxide and/or a sulfate of component B, the atomic ratio of component B to component A being from 0.01 to 1, and a vanadium compound localized in that area of said molded article which extends from its outermost surface to a depth of 500 microns or less, the content of the vanadium compound in said area being 0.1 to 15% by weight; and a method for removing nitrogen oxides from a waste gas, which comprises contacting a waste gas containing nitrogen oxides, together with ammonia and molecular oxygen, at a temperature of 150.degree. to 650.degree. C., with the aforesaid catalyst.
摘要:
Here is provided an adsorbent for adsorbing and removing an arsenic compound which becomes a catalyst poison in a selective contact reduction process for removing nitrogen oxides (NOx) from a combustion exhaust gas by the use of an ammonia as a reducing agent and a denitrating catalyst.The adsorbent of the present invention comprises a material in which the total volume of pores is 0.2 to 0.7 cc/g and the volume of the pores having a pore diameter of 300 .ANG. or more is 10% or more with respect to the total pore volume, and the material is a specific element, its oxide, an ion-exchanged zeolite or the like.In addition, the present invention is directed to a method for removing the arsenic compound from the combustion exhaust gas by injecting the adsorbent into the flow of the gas on the upstream side of the denitrating catalyst.
摘要:
This invention relates to a technique for removing nitrogen oxides (NOx) present in exhaust gases discharged from boilers and the like. When the temperature of the exhaust gas is 100° C. or below, a heat-treated active carbon produced by heat-treating a raw active carbon at 600 to 1,200° C. in a non-oxidizing atmosphere so as to remove oxygen-containing functional groups present at the surfaces thereof and thereby reduce the atomic surface oxygen/surface carbon ratio to 0.05 or less is preferably used. When the temperature of the exhaust gas exceeds 100° C., a heat-treated active carbon produced by heat-treating a raw active carbon at 600 to 1,200° C. in a non-oxidizing atmosphere and activating the surfaces thereof with sulfuric acid or nitric acid to impart oxidizing oxygen-containing functional groups thereto is preferably used.
摘要:
This invention relates to a technique for removing nitrogen oxides (NOx) present in exhaust gases discharged from boilers and the like. When the temperature of the exhaust gas is 100° C. or below, a heat-treated active carbon produced by heat-treating a raw active carbon at 600 to 1,200° C. in a non-oxidizing atmosphere so as to remove oxygen-containing functional groups present at the surfaces thereof and thereby reduce the atomic surface oxygen/surface carbon ratio to 0.05 or less is preferably used. When the temperature of the exhaust gas exceeds 100° C., a heat-treated active carbon produced by heat-treating a raw active carbon at 600 to 1,200° C. in a non-oxidizing atmosphere and activating the surfaces thereof with sulfuric acid or nitric acid to impart oxidizing oxygen-containing functional groups thereto is preferably used.
摘要:
A flue gas desulfurization apparatus includes at least one activated carbon fiber board 20 provided in a catalyst unit 6, the board being formed by alternatingly juxtaposing one or more plate-like activated carbon fiber sheets and one or more corrugated activated carbon fiber sheets so as to provide vertically extending conduits, wherein water for producing sulfuric acid is supplied, through a capillary phenomenon, to the activated carbon fiber board 20 provided in the catalyst unit 6. The flue gas desulfurization apparatus attains removal of sulfur oxides (SOx) by adding a minimum required amount of water to the activated carbon fiber board 20 so as to attain uniform water distribution and can reduce the amount of water required for removing sulfur oxides (SOx).
摘要翻译:烟道气脱硫装置包括设置在催化剂单元6中的至少一个活性碳纤维板20,该板通过将一个或多个板状活性炭纤维片和一个或多个波纹状活性碳纤维片交替并置而形成,以便 提供垂直延伸的管道,其中通过毛细管现象将生产硫酸的水供给到设置在催化剂单元6中的活性炭纤维板20。 烟道气脱硫装置通过向活性碳纤维板20添加最少量的水来实现硫的氧化物(SO x X)的除去,从而获得均匀的水分配并且可以减少水的量 需要用于除去硫氧化物(SO x X)。
摘要:
A high temperature denitration catalyst of a gas turbine single plant contains TiO2, at least one of WO3 and MoO3 and V2O5 of 0.5 wt % or less, preferably 0.2 wt % or less, or none of V2O5, and is optimized to be used in a temperature range up to a maximum 450 to 600° C. The used high temperature denitration catalyst is immersed into a V-containing water solution and dried and/or burned. An intermediate temperature denitration catalyst is produced containing a V2O5 component of 0.5 wt % or more, preferably 1.0 wt % or more, and is optimized for use in a temperature range of 250 to 450° C. This intermediate temperature denitration catalyst is re-used in a combined cycle plant after being modified or in other plants.
摘要翻译:燃气轮机单一工厂的高温脱硝催化剂含有TiO 2,WO 3 3和MoO 3 3和V 3中的至少一个, 0.5重量%以下,优选0.2重量%以下,或者不是V 2 O 5 O 5, 并优化为在最高达450至600℃的温度范围内使用。将所使用的高温脱硝催化剂浸入含V的水溶液中并干燥和/或燃烧。 制备含有0.5重量%以上,优选1.0重量%以上的V 2 O 5 O 5成分的中间温度脱硝催化剂,优选用于温度 范围为250至450℃。该中间温度脱硝催化剂在经修改后或在其它工厂中再次用于联合循环设备中。
摘要:
This invention relates to a technique for removing nitrogen oxides (NO.sub.x) present in exhaust gases discharged from boilers and the like. When the temperature of the exhaust gas is 100.degree. C. or below, a heat-treated active carbon produced by heat-treating a raw active carbon at 600 to 1,200.degree. C. in a non-oxidizing atmosphere so as to remove oxygen-containing functional groups present at the surfaces thereof and thereby reduce the atomic surface oxygen/surface carbon ratio to 0.05 or less is preferably used. When the temperature of the exhaust gas exceeds 100.degree. C., a heat-treated active carbon produced by heat-treating a raw active carbon at 600 to 1,200.degree. C. in a non-oxidizing atmosphere and activating the surfaces thereof with sulfuric acid or nitric acid to impart oxidizing oxygen-containing functional groups thereto is preferably used.
摘要:
For a system having a source of nitrogen oxide-containing gas, an ammonia reduction denitrator, and a leak ammonia recovery unit which adsorbs and removes ammonia escaping from said ammonia reduction denitrator, a method of removing adsorbed ammonia from said leak ammonia recovery unit and reusing the removed ammonia is provided which includes the steps of: introducing hot exhaust gas discharged from said nitrogen oxide-containing gas source into said leak ammonia recovery unit to desorb ammonia therefrom; after desorption of ammonia, cooling said heated leak ammonia recovery unit with cool air; and feeding ammonia carried away by said hot exhaust gas and said cool air to an upstream side of said ammonia reduction denitrator or to the source of nitrogen oxide-containing gas.
摘要:
An apparatus installed between a fuel economizer and an air preheater for the denitration of exhaust gas from a coal-fired boiler includes at least one vertical flue situated upstream of a reactor containing a denitration catalyst to cause an upward flow of the gas, A hopper is located below the vertical flue for collecting ash separated from the gas, A baffle is preferably provided in the flue to ensure the still more effective separation of ash from a gas.
摘要:
A method for the denitration of exhaust gas from a gas turbine or an internal combustion engine which comprises (a) reducing a part of the NO.sub.2 constituting NO.sub.x contained in the exhaust gas to NO by means of a reduction catalyst bed for reducing NO.sub.2 to NO, the reduction catalyst bed being installed in flow communication with the exhaust gas outlet of the gas turbine or internal combustion engine, and (b) injecting NH.sub.3 into the exhaust gas within an exhaust heat recovery unit and then decomposing and removing NO.sub.x contained in the exhaust gas and now composed chiefly of NO, by means a denitration catalyst bed installed within the exhaust heat recovery unit to effect the catalytic reduction of NO.sub.x with NH.sub.3.