摘要:
A processor implements a local stall functionality in which small, independent circuit units are stalled locally with the condition causing a stall being first detected locally, then propagated to other small independent circuit units. Stall conditions for a functional unit are detected locally with reduced logic circuitry and also without waiting to receive condition information from other functional units that is transmitted over long wires. Local stall logic circuits are distributed over diverse areas of an integrated circuit so that stall conditions are detected locally. A local stall is expanded into a global stall by propagation to logic circuits beyond a local region in subsequent cycles. Local detection of stall conditions and local stalling eliminates many critical paths in the processor.
摘要:
A processor performs precise trap handling for out-of-order and speculative load instructions. It keeps track of the age of load instructions in a shared scheme that includes a load buffer and a load annex. All precise exceptions are detected in a T phase of a load pipeline. Data and control information concerning load operations that hit in the data cache are staged in a load annex during the A1, A2, A3, and T pipeline stages until all exceptions in the same or earlier instruction packet are detected. Data and control information from all other load instructions is staged in the load annex after the load data is retrieved. Before the load data is retrieved, the load instruction is kept in a load buffer. If an exception occurs, any load in the same instruction packet as the instruction causing the exception is canceled. Any load instructions that are “younger” than the instruction that caused the exception are also canceled. The age of load instructions is determined by tracking the pipe stages of the instruction. When a trap occurs, any load instruction with a non-zero age indicator is canceled.
摘要:
A processor includes a device providing a throttling power output signal. The throttling power output signal is used to determine when to logically throttle the power consumed by the processor. At least one core in the processor includes a pipeline having a decode pipe; and a logical power throttling unit coupled to the device to receive the output signal, and coupled to the decode pipe. Following the logical power throttling unit receiving the power throttling output signal satisfying a predetermined criterion, the logical power throttling unit causes the decode pipe to reduce an average number of instructions decoded per processor cycle without physically changing the processor cycle or any processor supply voltages.
摘要:
The present method and system relate to categorizing URLs (Uniform Resource Locators) of web pages accessed by multiple users over an IP (Internet Protocol) based data network. The method and system collect real time data from IP data traffic occurring on the IP based data network, and extract parameters from the collected real time data, the parameters including an URL of a web page. The URL is processed by a rule based categorization engine, to associate a matching category to the URL of the web page. When no matching category is inferred, the URL is transferred to a semantic based categorization engine. A matching category is associated to the transferred URL by the semantic based categorization engine, based on a semantic analysis of the textual content extracted from the web page associated to the URL.
摘要:
A clothesline system comprises at least two separate cables that are independently tensionable through separate cable tensioning devices. The tension devices are attached together to provide for common, parallel movement of the separate cables though the cables are separately passed around separate pulleys at the both ends of the system. The two separate cables add strength to the system. The separate cables are preferably wound in left and right windings to prevent unraveling of the braid of the cable. By providing separate cables, assembly of the system is less complex as the two loops of cable are separate.
摘要:
A register file, in a processor, includes a first plurality of registers of a first size, n-bits. A decoder uses a mapping that divides the register file into a second plurality M of registers having a second size. Each of the registers having the second size is assigned a different name in a continuous name space. Each register of the second size includes a plurality N of registers of the first size, n-bits. Each register in the plurality N of registers is assigned the same name as the register of the second size that includes that plurality. State information is maintained in the register file for each n-bit register. The dependence of an instruction on other instructions is detected through the continuous name space. The state information allows the processor to determine when the information in any portion, or all, of a register is valid.
摘要:
Embodiments of the present invention provide a system for executing program code on a processor. In these embodiments, the processor is configured to start by using a primary strand to execute program code. Upon detecting a predetermined condition, the processor is configured to instantaneously checkpoint an architectural state of the primary strand and then use the subordinate strand to copy the checkpointed state to memory while using the primary strand to continue executing the program code without interruption.
摘要:
One embodiment of the present invention provides a system that prevents data hazards during simultaneous speculative threading. The system starts by executing instructions in an execute-ahead mode using a first thread. While executing instructions in the execute-ahead mode, the system maintains dependency information for each register indicating whether the register is subject to an unresolved data dependency. Upon the resolution of a data dependency during execute-ahead mode, the system copies dependency information to a speculative copy of the dependency information. The system then commences execution of the deferred instructions in a deferred mode using a second thread. While executing instructions in the deferred mode, if the speculative copy of the dependency information for a destination register indicates that a write-after-write (WAW) hazard exists with a subsequent non-deferred instruction executed by the first thread in execute-ahead mode, the system uses the second thread to execute the deferred instruction to produce a result and forwards the result to be used by subsequent deferred instructions without committing the result to the architectural state of the destination register. Hence, the system makes the result available to the subsequent deferred instructions without overwriting the result produced by a following non-deferred instruction.
摘要:
One embodiment of the present invention provides a system which creates multiple checkpoints in a processor that supports speculative-execution. The system starts by issuing instructions for execution in program order during execution of a program in a normal-execution mode. Upon encountering a launch condition during an instruction which causes a processor to enter execute-ahead mode, the system performs an initial checkpoint and commences execution of instructions in execute-ahead mode. Upon encountering a predefined condition during execute-ahead mode, the system generates an additional checkpoint and continues to execute instructions in execute-ahead mode. Generating the additional checkpoint allows the processor to return to the additional checkpoint, instead of the previous checkpoint, if the processor subsequently encounters a condition that requires the processor to return to a checkpoint.
摘要:
One embodiment of the present invention provides a system that enforces memory reference ordering requirements, such as Total Store Ordering (TSO), at a Level 1 (L1) cache in a multiprocessor. During operation, while executing instructions in a speculative-execution mode, the system receives an invalidation signal for a cache line at the L1 cache wherein the invalidation signal is received from a cache-coherence system within the multiprocessor. In response to the invalidation signal, if the cache line exists in the L1 cache, the system examines a load-mark in the cache line, wherein the load-mark being set indicates that the cache line has been loaded from during speculative execution. If the load-mark is set, the system fails the speculative-execution mode and resumes a normal-execution mode from a checkpoint. By failing the speculative-execution mode, the system ensures that a potential update to the cache line indicated by the invalidation signal will not cause the memory reference ordering requirements to be violated during the speculative-execution mode.