摘要:
The present invention relates to a process for improving the overall selectivity of an EO process for converting ethylene to ethylene oxide utilizing a highly selective EO silver catalyst containing a rhenium promoter wherein following normal operation a chloride strip of the chloride on the surface of the catalyst is conducted in order to remove a portion of the chlorides on the surface of the catalyst. The chloride strip involves the addition of certain saturated hydrocarbons to the feed. Following the chloride strip, the catalyst is optionally re-optimized.
摘要:
A process is provided for the start-up of an ethylene epoxidation process comprising: (a) contacting a catalyst bed comprising a high selectivity epoxidation catalyst with a feed comprising ethylene, oxygen and an organic chloride for a period of time until an increase of at least 1×10−5 mole-% of vinyl chloride (calculated as the moles of vinyl chloride relative to the total gas mixture), preferably 2×10−5 mole-% of vinyl chloride is detected in a reactor outlet gas or a recycle gas loop; and (b) subsequently adjusting the quantity of organic chloride in the feed to a value sufficient to produce ethylene oxide at a substantially optimum selectivity.
摘要:
A high activity and high selectivity silver catalyst comprising silver and, optionally, one or more promoters supported on a suitable support material having the form of a shaped agglomerate. The structure of the shaped agglomerate is that of a hollow cylinder having a relatively small inside (bore) diameter. The catalyst is made by providing the shaped material of a particular geometry and incorporating the catalytic components therein. The catalyst is useful in the epoxidation of ethylene.
摘要:
The present invention relates to an improved epoxidation process and an improved epoxidation reactor. The present invention makes use of a reactor which comprises a plurality of microchannels. Such process microchannels may be adapted such that the epoxidation and optionally other processes can take place in the microchannels and that they are in a heat exchange relation with channels adapted to contain a heat exchange fluid. A reactor comprising such process microchannels is referred to as a “microchannel reactor”. The invention also provides a method of installing an epoxidation catalyst in a microchannel reactor. The invention also provides a method of preparing an epoxidation catalyst. The invention also provides an epoxidation catalyst. The invention also provides a certain process for the epoxidation of an olefin and a process for the preparation of a chemical derivable from an olefin oxide. The invention also provides a microchannel reactor.
摘要:
A process for selecting shaped particles for use in a tube which is capable of being packed with shaped particles to form a packed bed in the tube. A desired value of one or more properties of the packed bed is defined. The dimensions of the shaped particles are calculated such that a packed bed in the tube of the shaped particles having the calculated dimensions meets or substantially meets the desired value(s), and shaped particles are selected in accordance with the calculated dimensions. The properties of the packed bed may be the volume fraction which is occupied by shaped particles, the packing density, and the resistivity for a gas flowing through the packed bed.
摘要:
A process for the production of an olefin oxide, which process comprises reacting a feed comprising an olefin and oxygen in a reactor tube in the presence of a silver-containing catalyst, wherein the presence of water in the catalyst bed is controlled such that the ratio of the partial pressure of water (PPH2O) divided by the vapor pressure of water (VPH2O) is less than 0.006, preferably less than 0.004.
摘要:
A reactor system for the oxidation of ethylene to ethylene oxide. The reactor system includes a reactor tube that contains a packed bed of shaped support material that can include a catalytic component. The shaped support material has a hollow cylinder geometric configuration. The reactor system has specific combinations of reactor tube and catalyst system geometries.