摘要:
A laminate for electronic devices contains a first outer layer of a layer comprising an organic solvent soluble and/or water dispersible, crosslinkable amorphous fluoropolymers, at least one mid-layer selected from at least one of the group consisting of (i) poly(chlorotrifluoro ethylene); (ii) polymeric film coated on one or both surfaces with liquid crystal polymer; (iii) liquid crystal polymers; (iv) metal foil; and (v) polyester, and a second outer layer wherein the second outer layer comprises pigmented EVA and wherein the second outer layer is substantially opaque to ultraviolet light. The laminate is particularly useful for use as a backing sheet for photovoltaic modules.
摘要:
The present invention provides a protective backing sheet for photovoltaic modules. The backing sheets of the current invention possess excellent weather resistance, heat resistance, color retention, adhesion between layers and encapsulant, and scratch resistance. The backing sheet can minimize the deterioration in the performance of the solar module due to moisture permeation. It also can achieve desirable photoelectric conversion efficiency over a long period of time. Additionally the described backing sheet, or alternatively referred to backskin, can be made in an aesthetically pleasing form.
摘要:
A protective backing sheet for photovoltaic modules is provided. The backing sheet has a layer including fluoropolymer which is cured on a substrate, and the layer includes boron nitride. The amount of boron nitride contained in the layer is within the range of 2 to 30.0% by weight, and preferably in the range of 5 to 10%. Also, the layer including fluoropolymer may further include a titanium dioxide.
摘要:
The present invention provides a protective backing sheet for photovoltaic modules. The backing sheets are capable of absorbing a wide range of solar wavelengths (UV, IR and visible) and re-emitting the absorbed solar radiation as a photons wherein the energy is at or greater than the band gap energy of corresponding semiconductor. The backing sheet can be used in a variety of applications including in photovoltaic devices.
摘要:
The present invention provides a protective backing sheet for photovoltaic modules. The backing sheet has a layer including fluoropolymer which is cured on a substrate, and the layer includes a hydrophobic silica. The amount of hydrophobic silica contained in the layer is within the range of 2.5 to 15.0% by weight, and preferably in the range of 7.5 to 12.5%. Also, the layer including fluoropolymer may further include a titanium dioxide.
摘要:
The present invention provides a protective backing sheet for photovoltaic modules. The backing sheet has a layer including fluoropolymer which is cured on a substrate, and the layer includes a hydrophobic silica. The amount of hydrophobic silica contained in the layer is within the range of 2.5 to 15.0% by weight, and preferably in the range of 7.5 to 12.5%. Also, the layer including fluoropolymer may further include a titanium dioxide.
摘要:
A protective backing sheet for photovoltaic modules is provided. The backing sheet has a layer including fluoropolymer which is cured on a substrate, and the layer includes boron nitride. The amount of boron nitride contained in the layer is within the range of 2 to 30.0% by weight, and preferably in the range of 5 to 10%. Also, the layer including fluoropolymer may further include a titanium dioxide.
摘要:
The present invention provides a protective backing sheet for photovoltaic modules. The backing sheets of the current invention possess excellent weather resistance, heat resistance, color retention, adhesion between layers and encapsulant, and scratch resistance. The backing sheet can minimize the deterioration in the performance of the solar module due to moisture permeation. It also can achieve desirable photoelectric conversion efficiency over a long period of time. Additionally the described backing sheet, or alternately referred to backskin, can be made in an aesthetically pleasing form.
摘要:
A photovoltaic module that resists or reduces unwanted increases in temperature of the photovoltaic cells encapsulated within the module is provided. This is accomplished by incorporating materials into module components that operate to direct heat away from the solar cells that are within the modules. One or more phase change materials are incorporated into the polymer layer of the backsheet that is position closest to the solar cells. Thermally conductive materials may be incorporated into the layers and/or module components closer to the outside of the module. These materials can be used separately or in conjunction with each other.
摘要:
A method of coating a substrate with the biocide particles dispersed into a coating permitting the antimicrobial particles to be positioned on the substrate such that they are in contact with the environment is provided. In the method, one or more biocides agents are dispersed into a coating. The coating with the biocide agent is applied to a substrate at a thickness such that at least some of the individual biocide particles extend beyond the surface of the coating.