摘要:
Non-magnetic and non-conductive powdered toner is applied to a rotating image cylinder having an electrostatic pattern. A container having a closed bottom and sides and open top contains the powdered toner. The powder is fluidized by introducing air through a pervious closed bottom of the container, and by vibrating the container. The toner is simultaneously stirred and electrically charged to a potential of greater than about 7 kv (plus or minus polarity) by rotating elements with radial pointed appendages in the container. Toner is transferred from the container to an image cylinder at an exposed nine o'clock position of the image cylinder by a plurality of transfer cylinders. A first transfer cylinder is mounted so that its periphery is just above the open top of the container and an applicator cylinder has its axis below the axis of the first cylinder, and its periphery adjacent both the first cylinder and the image cylinder. A second cylinder is for the removal of opposite sign charged toner and low charge toner from the applicator cylinder. Scrapers scrape unused toner from the first and applicator cylinders so that it falls into the open top of the container.
摘要:
Non-magnetic toner in an electrostatic imaging system, such as the MIDAX.RTM. electronic imaging system, is dynamically recycled. Wayward airborne toner particles in the imaging system are vacuum collected to provide an air stream with entrained toner particles, and a centrifugal separator separates the particles from the entraining air. The separated particles are then dynamically returned to the imaging system. At least one airlock, which may comprise at least first and second fluid actuated or mechanically actuated valves which are spaced from each other, is provided between the separator and a reservoir for toner particles to be supplied to a fluidized bed of toner particles in the imaging system. A distribution device for distributing the toner particles in at least two different horizontal paths, to return to the reservoir.
摘要:
Non-magnetic and non-conductive powdered toner is applied to a rotating image cylinder having an electrostatic pattern. A container having a closed bottom and sides and open top contains the powdered toner. The powder is fluidized by introducing air through a pervious closed bottom of the container, and by vibrating the container. The toner is simultaneously stirred and electrically charged to a potential of greater than about 7 kv (plus or minus polarity) by rotating elements with radial pointed appendages in the container. Toner is transferred from the container to an image cylinder at an exposed nine o'clock position of the image cylinder by a plurality of transfer cylinders. A first transfer cylinder is mounted so that its periphery is just above the open top of the container and an applicator cylinder has its axis below the axis of the first cylinder, and its periphery adjacent both the first cylinder and the image cylinder. A second cylinder is for the removal of opposite sign charged toner and low charge toner from the applicator cylinder. Scrapers scrape unused toner from the first and applicator cylinders so that it falls into the open top of the container.
摘要:
A specified and designated, non-primary color print (imaging) is applied to a substrate (paper) by mixing at least first and second differently colored toner particles having substantially uniform physical characteristics, and introducing them in desired proportions into a fluidized bed. The toner powders are uniformly mixed together in the fluidized bed (as by using rotors in addition to applying fluidizing air to the bed), and then a substantially uniform electrostatic charge (e.g. about +6.5-+8 kV D.C., which can be applied by blades on the rotor) is applied to the bed, and then the electrostatically charged mixture of toner particles is applied to the substrate, to image uniform non-primary color symbols on the substrate. The uniform physical characteristics of the powders are size (the vast majority of particles having a size between about 5 microns and about 25 microns), a resistivity of greater than 10.sup.12 ohm-cm, and a flowability between a predefined minimum and maximum. When utilizing the fluidized bed as according to the invention, slight changes in chemical composition of the toners may be easily accommodated without change in the resulting uniform imaging.
摘要:
Electrically conductive magnetic toner is supplied to an electrostatic printing apparatus by dispensing it pneumatically from one of two different toner bottles mounted on dispenser blocks. The toner passes through a chute into a container having an air previous, toner impervious, bottom. The toner particles are fluidized in the container, and come into contact with the rotating surface of an applicator roller having interior magnets, and the amount of toner which stays on the applicator roller surface is controlled in part by rotating the surface past a metering blade. To periodically declump the toner, a mechanical element is depressed which reverses the direction of the applicator roller, and brings a scraper blade into contact with the surface of the applicator roller, and applies a high level of vacuum to remove scraped off toner.
摘要:
A security document is produced from a paper substrate having invisible hydrophobic toner blended into the paper. The clear toner is produced by milling and classifying a polyester resin, mixing it with silica flowing agent, and then electrostatically imaging the toner onto the paper substrate, as a spot that can be overprinted, or preferably as indicia that is not visible to the naked eye or color copiers. An infra-red absorbing or UV responsive dye may be added to the toner so that it is visible under infra-red/ultraviolet light respectively, or without that dye it is not visible when eliminated by light of any wavelength. When applied to the paper the toner is snow white, but after infra-red heat fusing it blends into the paper and is substantially invisible. The security indicia is easily made visible by passing a conventional marker nib over it, or other mechanism for applying a water based low concentrate colored ink which is readily absorbed by the surrounding paper, but not by the hydrophobic security indicia.
摘要:
Print cartridges for ion/electron deposition printing are periodically cleaned to provide preventive maintenance, using a simple cleaning assembly that automatically moves the cartridges first past a water washing nozzle, and then past an air drying nozzle, at slow speed, then being manually withdrawn from the cleaning assembly and replaced in the printer. The drive mechanism typically is a single roller disposed above the print cartridge, driven by a motor connected to the housing. A single water spray nozzle is disposed at an intermediate portion of the housing directed with a fan pattern spray up toward the cartridge, and a single air nozzle supplied with heated air is disposed adjacent the outlet of the cartridge. Sensing of the position of the cartridge is provided by first through fourth in-line microswitches which are disposed above the cartridge and which are cam actuated by the cartridge as it moves through the housing to control the motor driving the roller, the pump supplying water to the water nozzle, and a solenoid valve connecting the air nozzle to a source of compressed air. The cartridges are cleaned every 10,000-30,000 feet of use, and then replaced.
摘要:
A substrate capable of receiving and retaining imaging is coded so as to maximize the amount of the scannable information that can be packed into an area, and/or to provide an effective security feature. A first machine readable identification code (e.g. bar code) is imaged on a predetermined area of the substrate, and is opaque to a first predetermined wavelength range of electromagnetic energy (e.g. the infra-red region of light). An overlay is applied over and at least partially covering the first code. The overlay is transparent to the first wavelength range, and opaque to a second wavelength range (e.g. the visible spectrum of light). The overlay may be a security block which substantially completely covers the first code, or may be a second bar code (or additional codes) which is transparent to the second range. The codes may be read by multiple passes of different scanner heads by relative movement between the heads and the substrate, or by a scanner in which first and second (or more) different scanner heads are mounted together so that two different wavelength range bar codes on the substrate may be read at the same time.
摘要:
A method and apparatus are provided for "field effect imaging" of moving substrates, such as webs of paper. Non-conductive, non-magnetic toner having approximately a 5-20 micron mean particle size is electrically charged to a level of at least about 8 micro Coulombs/gram and then a first roller with a conductive surface is brought into operative association with the electrically charged toner so that toner particles adhere to the surface. The toner particles are preferably maintained in an electrostatic fluidized bed, and charged by a corona element in the bed. An array of pin or stylus primary electrodes are selectively energized or de-energized to provide no-write or write condition, respectively using a computer to switch the electrodes into or out of operative connection to a source of electrical potential. The toner particles are transferred from the first roller to a substrate either directly (after passing past the primary electrodes), or they are first transferred to a second roller which then brings the toner particles into contact with the substrate. If a second roller is utilized, the primary electrodes can be in association with the first roller, or between the first and second rollers for transferring only "write" toner to the second roller.
摘要:
A method and apparatus are provided for "field effect imaging" of moving substrates, such as webs of paper. Non-conductive, nonmagnetic toner having approximately a 5-20 micron mean particle size is electrically charged to a level of at least about 8 micro Coulombs/gram and then a first roller with a conductive surface is brought into operative association with the electrically charged toner so that toner particles adhere to the surface. The toner particles are preferably maintained in an electrostatic fluidized bed, and charged by a corona element in the bed. An array of pin or stylus primary electrodes are selectively energized or de-energized to provide no-write or write condition, respectively using a computer to switch the electrodes into or out of operative connection to a source of electrical potential. The toner particles are transferred from the first roller to a substrate either directly (after passing past the primary electrodes), or they are first transferred to a second roller which then brings the toner particles into contact with the substrate. If a second roller is utilized, the primary electrodes can be in association with the first roller, or between the first and second rollers for transferring only "write" toner to the second roller.