Abstract:
Bone fracture reduction devices, systems, and methods couple to a patient platform a mechanical bone fracture reduction fixture, which is sized and configured to be conveyed separate from the patient platform. The bone fracture reduction fixture carries an array of mechanical force reduction assemblies that are sized and configured to independently mechanically manipulate a fractured bone region. Each mechanical force reduction assembly functions independently of the other mechanical force reduction assemblies, to independently apply and maintain one of the prescribed mechanical reduction forces to the fracture and also mechanically reduce the fracture in the desired reduction planes.
Abstract:
An array of mechanical force reduction assemblies sized and configured to independently mechanically manipulate a fractured bone region. Each assembly functions independently of the other assemblies, to apply and maintain one of the prescribed mechanical reduction forces to the fracture, to thereby mechanically reduce the fracture in a desired way. A carrier coupled to the assembly accommodates temporary attachment of an orthotic brace, residing thereon, partially or fully assembled in a region of the bone fracture. A linkage mechanism accommodates the rotational articulation of the brace in response to the application of one or more mechanical force vectors, to move the bone fracture into a desired anatomic orientation. A locking mechanism maintains the orientation of the brace to maintain the desired anatomic orientation. After release from the carrier, the brace serves in an ambulatory fashion to maintain the desired anatomic orientation after reduction and as healing occurs.
Abstract:
Bone fracture reduction devices, systems, and methods couple to a patient platform a mechanical bone fracture reduction fixture, which is sized and configured to be conveyed separate from the patient platform. The bone fracture reduction fixture carries an array of mechanical force reduction assemblies that are sized and configured to independently mechanically manipulate a fractured bone region. Each mechanical force reduction assembly functions independently of the other mechanical force reduction assemblies, to independently apply and maintain one of the prescribed mechanical reduction forces to the fracture and also mechanically reduce the fracture in the desired reduction planes.
Abstract:
A fracture reduction is mechanically achieved by supporting a body region having the bone fracture on a frame. A first reduction mechanism on the frame is operated to apply to the bone fracture a first predefined force reduction vector that returns the bone fracture to a corrective alignment in a first anatomic orientation, while also mechanically maintaining the corrective alignment in the first anatomic orientation. Independently, a second reduction mechanism on the frame is operated to apply a second predefined force reduction vector that returns the bone fracture to a corrective alignment in a second anatomic orientation different than the first anatomic orientation without altering the corrective alignment in the first anatomic orientation, while mechanically maintaining the corrective alignment in the second anatomic orientation. The fracture reduction is mechanically fixed by mechanically guiding the placement at least one bone fixing device into the reduced bone fracture.
Abstract:
A frame is sized and configured to support a reduced bone fracture of an individual. A guide assembly on the frame carries a bone fixing device guide that defines a guide path along which a bone fixing device can be advanced into a region of the reduced bone fracture. A linkage system couples the bone fixing device guide to the frame for articulation of the guide path among a plurality of desired orientations with respect to the reduced bone fracture. A guide bushing is included. Which includes packaging that maintains the guide bushing in a sterile condition prior to insertion into the bone fixing device guide.
Abstract:
A frame is sized and configured to support a reduced bone fracture of an individual. A guide assembly on the frame carries a bone fixing device guide that defines a guide path along which a bone fixing device can be advanced into a region of the reduced bone fracture. A linkage system couples the bone fixing device guide to the frame for articulation of the guide path among a plurality of desired orientations with respect to the reduced bone fracture. A guide bushing is included. Which includes packaging that maintains the guide bushing in a sterile condition prior to insertion into the bone fixing device guide.
Abstract:
A fracture reduction is mechanically achieved by supporting a body region having the bone fracture on a frame. A first reduction mechanism on the frame is operated to apply to the bone fracture a first predefined force reduction vector that returns the bone fracture to a corrective alignment in a first anatomic orientation, while also mechanically maintaining the corrective alignment in the first anatomic orientation. Independently, a second reduction mechanism on the frame is operated to apply a second predefined force reduction vector that returns the bone fracture to a corrective alignment in a second anatomic orientation different than the first anatomic orientation without altering the corrective alignment in the first anatomic orientation, while mechanically maintaining the corrective alignment in the second anatomic orientation. The fracture reduction is mechanically fixed by mechanically guiding the placement at least one bone fixing device into the reduced bone fracture.
Abstract:
The present invention relates to a device and method to perform 1) disk fusing, 2) an artificial replacement of the nucleus, 3) artificial replacement of the annulus, or 4), an artificial replacement of both the nucleus and annulus. The device is designed to be placed into the inter-vertebral space following discectomy. The invention includes a delivery catheter and an expandable continuous mesh that has a torus configuration with a lumen within the mesh and a center hole. The mesh can be diametrically expanded in diameter into the disc space whereby various materials can be injected into the lumen and/or the center hole.
Abstract:
The present invention relates to a device and method to perform 1) disk fusing, 2) an artificial replacement of the nucleus, 3) artificial replacement of the annulus, or 4), an artificial replacement of both the nucleus and annulus. The device is designed to be placed into the inter-vertebral space following discectomy. The invention includes a delivery catheter and an expandable continuous mesh that has a torus configuration with a lumen within the mesh and a center hole. The mesh can be diametrically expanded in diameter into the disc space whereby various materials can be injected into the lumen and/or the center hole.