摘要:
Multiple write buffers are provided within each memory module and are utilized to buffer multiple received write data forwarded to the chip via a write-to-buffer data operation. When a write is received at the memory controller, the memory controller first issues the write-to-buffer (data) operation and the data is forwarded to one of the write buffers. Multiple writes targeting the same DIMM are thus buffered. When all of the available buffers at a memory module are full, the memory controller issues the set of address only write commands to the memory module. The control logic of the DIMM streams all of the buffered write data to the memory device(s) in one continuous burst. By buffering multiple writes and then writing all buffered write data within the DIMM in a single burst, the write-to-read turnaround penalty of the memory module's data bus is substantially minimized.
摘要:
Memory modules are designed with multiple write buffers utilized to temporarily hold write data. “Write-to-buffer” operations moves write data from the memory controller to the write buffers while the memory module is busy processing read operations. Then, address-only “write” commands are later issued to write the buffered write data to the memory device. The write commands targeting idle DIMMs are issued in sequence ahead of writes targeting busy DIMMs (or soon to be busy). Moving the data via a background write-to-buffer operation increases the efficiency of the common write data channel and allows the write data bus to reach maximum bandwidth during periods of heavy read activity. The actual write operations, deferred to periods of when the negative affects of the write can be completely/mostly hidden. In periods of light read activity or when there are no reads pending, buffering data in the memory module enables the buffered data to be written in parallel across multiple memory modules simultaneously.
摘要:
Memory modules are designed with multiple write buffers utilized to temporarily hold write data. “Write-to-buffer” operations moves write data from the memory controller to the write buffers while the memory module is busy processing read operations. Then, address-only “write” commands are later issued to write the buffered write data to the memory device. The write commands targeting idle DIMMs are issued in sequence ahead of writes targeting busy DIMMs (or soon to be busy). Moving the data via a background write-to-buffer operation increases the efficiency of the common write data channel and allows the write data bus to reach maximum bandwidth during periods of heavy read activity. The actual write operations, deferred to periods of when the negative affects of the write can be completely/mostly hidden. In periods of light read activity or when there are no reads pending, buffering data in the memory module enables the buffered data to be written in parallel across multiple memory modules simultaneously.
摘要:
A set of N copies of bank control logic are provided for tracking the banks within the memory modules (DRAMS). When the total number of banks within the memory module(s) is greater than N, the addresses of particular banks are folded into a single grouping. The banks are represented by the N copies of the bank control logic even when the total number of banks is greater than N. Each bank within the group is tagged as being busy when any one of the banks in the group is the target of a memory access request. The algorithm folds the addresses of the banks in an order that substantially minimizes the likelihood that a bank that is in a busy or false busy state will be the target of another memory access request. Power and logic savings are recognized as only N copies of bank control logic have to be supported.
摘要:
A method and system for enabling directed temperature/power management at the DIMM-level and/or DRAM-level utilizing intelligent scheduling of memory access operations received at the memory controller. Hot spots within the memory subsystem, caused by operating the DIMMs/DRAMs above predetermined/preset threshold power/temperature values for operating a DIMM and/or a DRAM, are avoided/controlled by logic within the memory controller. The memory controller logic throttles the number/frequency at which commands (read/write operations) are issued to the specific DIMM/DRAM based on stored parameter values and tracking of outstanding operations issued to the memory subsystem devices.
摘要:
A memory subsystem completes multiple read operations in parallel, utilizing the functionality of buffered memory modules in a daisy chain topology. A variable read latency is provided with each read command to enable memory modules to run independently in the memory subsystem. Busy periods of the memory device architecture are hidden by allowing data buses on multiple memory modules attached to the same data channel to run in parallel rather than in series and by issuing reads earlier than required to enable the memory devices to return from a busy state earlier. During scheduling of reads, the earliest received read whose target memory module is not busy is immediately issued at a next command cycle. The memory controller provides a delay parameter with each issued read. The number of cycles of delay is calculated to allow maximum utilization of the memory modules' data bus bandwidth without causing collisions on the memory channel.
摘要:
A memory subsystem completes multiple read operations in parallel, utilizing the functionality of buffered memory modules in a daisy chain topology. A variable read latency is provided with each read command to enable memory modules to run independently in the memory subsystem. Busy periods of the memory device architecture are hidden by allowing data buses on multiple memory modules attached to the same data channel to run in parallel rather than in series and by issuing reads earlier than required to enable the memory devices to return from a busy state earlier. During scheduling of reads, the earliest received read whose target memory module is not busy is immediately issued at a next command cycle. The memory controller provides a delay parameter with each issued read. The number of cycles of delay is calculated to allow maximum utilization of the memory modules' data bus bandwidth without causing collisions on the memory channel.
摘要:
A method and system is presented for correcting a data error in a primary Dynamic Random Access Memory (DRAM) in a Dual In-line Memory Module (DIMM). Each DRAM has a left half (for storing bits 0:3) and a right half (for storing bits 4:7). A determination is made as to whether the data error was in the left or right half of the primary DRAM. The half of the primary DRAM in which the error occurred is removed from service. All subsequent reads and writes for data originally stored in the primary DRAM's defective half are made to a half of a spare DRAM in the DIMM, while the DRAM's non-defective half continues to be used for subsequently storing data.
摘要:
A method and system for enabling directed temperature/power management at the DIMM-level and/or DRAM-level utilizing intelligent scheduling of memory access operations received at the memory controller. Hot spots within the memory subsystem, caused by operating the DIMMs/DRAMs above predetermined/preset threshold power/temperature values for operating a DIMM and/or a DRAM, are avoided/controlled by logic within the memory controller. The memory controller logic throttles the number/frequency at which commands (read/write operations) are issued to the specific DIMM/DRAM based on feedback data received from the specific DIMM/DRAM reaching the preset threshold power usage value.