摘要:
An apparatus for solder joining metal tapes to form laminated metal tapes comprises an alignment box having a base and a sidewall means extending therefrom to define a tapered inner channel extending through the box. The tapered channel having an entrance end and narrowing to an exit end. At least one tapered wall extending from the base and within the inner channel to define subchannels that are spaced at the entrance end and converge into the inner channel before the exit end. The sidewall means and tapered wall extending from the base to respective wall tops, and a cover extending over the channel and subchannels is mounted on the wall tops. The base, sidewalls, inner wall, and cover being configured to form the channel and subchannels to have a first preselected distance between the base and cover that is greater than the width of the tapes. A second preselected distance between oppositely facing walls bordering the subchannels that is greater than the thickness of the tapes, and a third preselected distance between oppositely facing walls at the exit end that is greater than the thickness of the laminated tapes. A solder duct means mounted on the box for directing molten solder into the inner channel to flow from the exit end to the entrance end. The solder duct means having a slot extending therethrough and aligned with the exit end. A seal means mounted on the solder duct means adjacent the slot for minimizing solder escaping from the slot while solder coated tapes pass therefrom, and a wiper means mounted on the solder duct means and positioned from the seal means removes excess solder from tapes passing through the seal means.
摘要:
An apparatus for filtering a molten solder bath comprises, a housing having an entrance end and an exit end enclosing a channel means extending from the entrance end to a filter means adjacent the exit end. The channel means being configured for receiving molten solder at the entrance end and directing the solder to the filter means in a turbulent flow. The filter means being configured to filter particles from the flow and direct the filtered flow to the exit end. A cooling means is positioned on the housing for cooling solder flowing through the channel means without reacting with the solder. A method for filtering a molten solder bath comprises, directing solder from the bath in a turbulent flow and cooling the flow to form a precipitate of an impurity in the molten solder. The cooled flow is filtered to remove particles and form a high-purity solder, and the high-purity solder is returned to the bath. Preferably, the molten solder is protected by an inert atmosphere that does not react with the solder.
摘要:
An apparatus for filtering a molten solder bath comprises, a housing having an entrance end and an exit end enclosing a chanel means extending from the entrance end to a filter means adjacent the exit end. The channel means being configured for receiving molten solder at the entrance end and directing the solder to the filter means in a turbulent flow. The filter means being configured to filter particles from the flow and direct the filtered flow to the exit end. A cooling means is positioned on the housing for cooling solder flowing through the channel means without reacting with the solder. A method for filtering a molten solder bath comprises, directing solder from the bath in a turbulent flow and cooling the flow to form a precipitate of an impurity in the molten solder. The cooled flow is filtered to remove particles and form a high-purity solder, and the high-purity solder is returned to the bath. Preferably, the molten solder is protected by an inert atmosphere that does not react with the solder.
摘要:
Two Nb.sub.3 Sn superconducting tapes are overlapped by an amount equal to about two times the width of the superconducting tapes. A filler material of material substantially similar to the tapes is placed between the two tapes in the overlapped region. A NdYAG laser (4) sends a 20-40 watt beam focused by a lens that heats the tapes to create a bridge of superconductivity material formed over the region where the tapes are joined.
摘要:
Superconducting tapes having an inner laminate comprised of a parent-metal layer, a superconductive alloy layer on the parent-metal, a reactive-metal layer, and an outer laminate soldered thereon are joined in a superconducting joint by the method of this invention. The outer laminate is removed to form exposed sections, and the tapes are positioned so that the exposed sections are in contact. A melt zone within the exposed sections where the exposed sections are in contact is melted. The melt zone is at least large enough to provide sufficient parent-metal, superconductive alloy, and reactive-metal to form a melt that resolidifies as a continuous precipitate of the superconductive alloy. The melt resolidifies as a continuous precipitate of the superconductive alloy that is continuous with the superconductive alloy on the superconducting tape. Optionally, sections of the outer laminate material corresponding to the size of the exposed sections are bonded to the outermost surfaces of the joined exposed sections.
摘要:
Superconducting tapes have an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, and a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound. A superconducting joint between contiguous tapes comprises, a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes.
摘要:
Superconducting tapes having an inner laminate comprised of a parent-metal layer, a superconductive alloy layer on the parent-metal, a reactive-metal layer, and an outer laminate soldered thereon are joined in a superconducting joint by the method of this invention. The outer laminate, reactive-metal layer, and superconductive alloy layer are removed to form exposed sections of the parent metal layer. The tapes are positioned so that the exposed sections are in contact. Metallurgical bonding, for example by spot welding, forms bridges between the parent-metal layers. The joined exposed sections are heated in a protective atmosphere, and in the presence of excess reactive metal to form a continuous layer of the superconductive alloy on the bridge and the exposed areas that is continuous with the superconductive alloy layer on the superconducting tape. Optionally, sections of the outer laminate material corresponding to the size of the exposed sections are bonded to the outermost surfaces of the joined exposed sections.
摘要:
An improved thermal barrier coating is disclosed. The coating is formed on a metal part to be exposed to high temperature gases. The metal part is first coated with an adherent sublayer of MCrAlY alloy. In this case, the M of the MCrAlY is nickel, cobalt, iron, or some combination of these metals. A diffused layer of MCrAlY combined with a low concentration of mullite is formed over the MCrAlY subcoating and the mullite is increased in concentration as the thickness of the layer increases. The outer surface of the layer is all mullite. Improved life expectancy and decreased thermal conductivity is achieved.