摘要:
A stacked MLCC capacitor is provided wherein the capacitor stack comprises multilayered ceramic capacitors wherein each multilayered ceramic capacitor comprises first electrodes and second electrodes in an alternating stack with a dielectric between each first electrode and each adjacent second electrode. The first electrodes terminate at a first side and the second electrodes second side. A first transient liquid phase sintering conductive layer is the first side and in electrical contact with each first electrode; and a second transient liquid phase sintering conductive layer is on the second side and in electrical contact with each second electrode.
摘要:
The invention describes an apparatus and a method for soldering mating parts, in particular electrical components to circuit boards or other carrier elements. The mating parts may be received and pressed together between two plate elements. One of the plate elements, which is heatable, may be flexible and may be elastically biased in the direction of the other plate element, by means of a plurality of elastically biased elements. Alternatively or additionally, heating may be provided for both plate elements.
摘要:
A stacked MLCC capacitor is provided wherein the capacitor stack comprises multilayered ceramic capacitors wherein each multilayered ceramic capacitor comprises first electrodes and second electrodes in an alternating stack with a dielectric between each first electrode and each adjacent second electrode. The first electrodes terminate at a first side and the second electrodes second side. A first transient liquid phase sintering conductive layer is the first side and in electrical contact with each first electrode; and a second transient liquid phase sintering conductive layer is on the second side and in electrical contact with each second electrode.
摘要:
A solar cell module comprises a solar cell die that is soldered to a substrate. The substrate comprises one or more power contacts. A power conductor is soldered to a power contact, thereby electrically coupling the power conductor to the solar cell die. A pre-heat module heats a first side of the substrate at a first area to a first temperature for a first duration. Then, a solder heat source solders a power conductor to a power contact at a second area of the substrate at a second temperature for a second duration. The resulting solder connection at the power conductor is less prone to cold-solder defects. The temperature of the pre-heat module is controlled to promote curing of an RTV sealant used in the manufacture of the solar cell module. The temperature of the solder heat source is controlled to avoid burning and degrading of the RTV sealant.
摘要:
Solder can be used to wet and bind glass substrates together to ensure a hermetic seal that superior (less penetrable) than conventional polymeric (thermoplastic or thermoplastic elastomer) seals in electric and electronic applications.
摘要:
A method includes reflowing a solder region of a package structure, and performing a cleaning on the package structure at a cleaning temperature higher than a room temperature. Between the step of reflowing and the step of cleaning, the package structure is not cooled to temperatures close to the room temperature.
摘要:
A conveyance section positioning method has carrier pallets (40) on which workpieces are fixed, a conveyer (20), a heating furnace (13) for heating the workpieces, and a positioning mechanism for positioning the carrier pallets (40), and the method stops the carrier pallets (40) at predetermined positions. The heating furnace (13) has halogen heaters (30) for heating the workpieces. The carrier pallets (40) each have projections (41) and output grooves (42). Comb tooth-shaped stopper projections (35a) engaging with the projections (41) are formed on a carrier stopper (35). When the carrier stopper (35) is moved forward, the stopper projections (35a) and the projections (41) are engaged with each other. In this one operation, the carrier pallets (40) are positioned at places corresponding to the halogen heaters (30), and then the workpieces are heated.
摘要:
A MoSi2 arc-shaped heater formed in a continuous waveform, characterized in that U-shaped heater members having parallel parts are connected alternately to each other at the end parts, and the parallel faces of the U-shaped heater members have an angle relative to each other and an arc-shaped face with a specified curvature in a connecting direction, wherein a large number of parallel U-shaped heater members having heating parts are connected to each other and welded so that the heater can have a generally arc-shaped curved surface to install the heater onto the inner wall of a heating furnace, whereby the arc heater having an excellent joining strength and capable of being manufactured stably, and a method and a device for manufactured the heater can be provided.
摘要:
An electrical connector is soldered or affixed to a conductive element of a glass sheet of a vehicular window via radiation heating of a layer of solder with an infrared radiative heating device. The heating device may include an infrared lamp and a reflector, which functions to direct the radiant energy from the lamp to a target region generally corresponding with the location of the solder layer between the electrical connector and the conductive element. The heating device is operable to rapidly and substantially heat the solder layer to a desired temperature to melt the solder layer, while substantially limiting directing of heat to the glass sheet. The electrical connector may be affixed at a vehicular or modular window assembly plant, such that the glass sheet may be transported from a glass manufacturing plant to the vehicular or modular window assembly plant without the electrical connector.
摘要:
A method for mounting components on an abutted circuit board. The main abutted circuit board has N first circuit boards and N second circuit boards, where N is a positive integer. Each of the abutted circuit boards has a front side and a rear side. The front sides of the first circuit boards abut on the rear sides of the second circuit boards. The method includes placing the circuit boards in a component mounter for mounting a plurality of components on the front sides of the first circuit boards and mounting a plurality of components on the rear sides of the second circuit boards. The method also includes placing the circuit boards in the component mounter for mounting a plurality of components on rear sides of the first circuit boards and mounting a plurality of components on front sides of the second circuit boards.