摘要:
Self-assembly of a chemically insensitive redox material, such as ferrocenyl thiol, and a chemically sensitive redox material, such as a quinone thiol, onto microelectrodes forms the basis for a two-terminal, voltammetric microsensor having reference and sensor functions on the same electrode. Detection is based on measuring the potential difference of current peaks for oxidation and reduction of the reference (ferrocene) and indicator (quinone) in aqueous electrolyte in a two-terminal, linear sweep voltammogram using a counterelectrode of relatively large surface area. Use of microelectrodes modified with monolayer coverages of reference and indicator molecules minimizes the size of the counterelectrode and the perturbation of the solution interrogated. Key advantages are that the sensor requires no separate reference electrode and the sensor functions as long as current peaks can be located for reference and indicator molecules.
摘要:
The invention provides a method of co-culturing mammalian muscle cells and mammalian motoneurons. The method comprises preparing one or more carriers coated with a covalently bonded monolayer of trimethoxysilylpropyl diethylenetriamine (DETA); suspending isolated fetal mammalian skeletal muscle cells in serum-free medium according to medium composition 1; suspending isolated fetal mammalian spinal motoneurons in serum-free medium according to medium composition 1; plating the suspended muscle cells onto the one or more carriers at a predetermined density and allowing the muscle cells to attach; plating the suspended motoneurons at a predetermined density onto the one or more carriers and allowing the motoneurons to attach; covering the one or more carriers with a mixture of medium composition 1 and medium composition 2; and incubating the carriers covered in the media mixture.
摘要:
The invention provides a method of producing oligodendrocytes by in vitro differentiation of human multi-potent progenitor cells (MLPCs). The method comprises culturing isolated MLPCs on a first surface in a serum-free defined culture medium; replacing the culture medium with serum-free culture medium supplemented with bFGF, EGF and PDGF-AA for approximately 24 hours; changing the cultured MLPCs into the supplemented serum-free culture medium further supplemented with differentiation factors norepinephrine, forskolin. and K252a; establishing a 3D environment by covering the culture with a second surface opposite and spaced apart from the first surface, so as to contain the MLPCs therebetween; and continuing to culture until a majority of the MLPCs have differentiated into oligodendrocytes. Additionally included is a method of treatment for a subject afflicted by a disease characterized by central or peripheral nervous system demyelination, the method comprising transplanting into the subject oligodendrocytes produced according to the method disclosed.
摘要:
This invention focuses on the marriage of solid-state electronics and neuronal function to create a new high-throughput electrophysiological assay to determine a compound's acute and chronic effect on cellular function. Electronics, surface chemistry, biotechnology, and fundamental neuroscience are integrated to provide an assay where the reporter element is an array of electrically active cells. This innovative technology can be applied to neurotoxicity, and to screening compounds from combinatorial chemistry, gene function analysis, and basic neuroscience applications. The system of the invention analyzes how the action potential is interrupted by drugs or toxins. Differences in the action potentials are due to individual toxins acting on different biochemical pathways, which in turn affects different ion channels, thereby changing the peak shape of the action potential differently for each toxin. Algorithms to analyze the action potential peak shape differences are used to indicate the pathway(s) affected by the presence of a new drug or compound; from that, aspects of its function in that cell are deduced. This observation can be exploited to determine the functional category of biochemical action of an unknown compound. An important aspect of the invention is surface chemistry that permits establishment of a high impedance seal between cell and a metal microelectrode. This seal recreates the interface that enables functional patch-clamp electrophysiology with glass micropipettes, and allows extracellular electrophysiology on a microelectrode array. Thus, the invention teaches the feasibility of using living cells as diagnostics for high throughput real-time assays of cell function.
摘要:
This invention focuses on the marriage of solid-state electronics and neuronal function to create a new high-throughput electrophysiological assay to determine a compound's acute and chronic effect on cellular function. Electronics, surface chemistry, biotechnology, and fundamental neuroscience are integrated to provide an assay where the reporter element is an array of electrically active cells. This innovative technology can be applied to neurotoxicity, and to screening compounds from combinatorial chemistry, gene function analysis, and basic neuroscience applications. The system of the invention analyzes how the action potential is interrupted by drugs or toxins. Differences in the action potentials are due to individual toxins acting on different biochemical pathways, which in turn affects different ion channels, thereby changing the peak shape of the action potential differently for each toxin. Algorithms to analyze the action potential peak shape differences are used to indicate the pathway(s) affected by the presence of a new drug or compound; from that, aspects of its function in that cell are deduced. This observation can be exploited to determine the functional category of biochemical action of an unknown compound. An important aspect of the invention is surface chemistry that permits establishment of a high impedance seal between cell and a metal microelectrode. This seal recreates the interface that enables functional patch-clamp electrophysiology with glass micropipettes, and allows extracellular electrophysiology on a microelectrode array. Thus, the invention teaches the feasibility of using living cells as diagnostics for high throughput real-time assays of cell function.
摘要:
High aspect ratio metal microstructures may be prepared by a method involving(i) forming a layer of a photoresist on a substrate;(ii) exposing the layer to actinic radiation in an imagewise manner and developing the exposed layer to obtain a surface which contains regions having no remaining photoresist and regions covered with photoresist;(iii) metallizing the surface to form a layer of metal on the region of the surface having no remaining photoresist and on the sides of the regions of photoresist remaining on the surface; and(iv) optionally, stripping the photoresist remaining on the surface.Such microstructures are useful as electron emitters, anisotropic high dielectric interconnects, masks for x-ray photolithography, carriers for the controlled release of active agents, and ultramicroelectrode arrays.
摘要:
This invention focuses on the marriage of solid-state electronics and neuronal function to create a new high-throughput electrophysiological assay to determine a compound's acute and chronic effect on cellular function. Electronics, surface chemistry, biotechnology, and fundamental neuroscience are integrated to provide an assay where the reporter element is an array of electrically active cells. This innovative technology can be applied to neurotoxicity, and to screening compounds from combinatorial chemistry, gene function analysis, and basic neuroscience applications. The system of the invention analyzes how the action potential is interrupted by drugs or toxins. Differences in the action potentials are due to individual toxins acting on different biochemical pathways, which in turn affects different ion channels, thereby changing the peak shape of the action potential differently for each toxin. Algorithms to analyze the action potential peak shape differences are used to indicate the pathway(s) affected by the presence of a new drug or compound; from that, aspects of its function in that cell are deduced. This observation can be exploited to determine the functional category of biochemical action of an unknown compound. An important aspect of the invention is surface chemistry that permits establishment of a high impedance seal between cell and a metal microelectrode. This seal recreates the interface that enables functional patch-clamp electrophysiology with glass micropipettes, and allows extracellular electrophysiology on a microelectrode array. Thus, the invention teaches the feasibility of using living cells as diagnostics for high throughput real-time assays of cell function.
摘要:
A neuroelectric device is defined by a substrate having a neuronal cell provided thereon, a stimulator for the neuron, and a transducer for detecting a signal produced in the neuron. The neuronal cell is positioned on the substrate in a predefined orientation. The neuronal cell is conveniently oriented by providing a patterned self-assembled monolayer on the substrate. In a preferred embodiment, a capacitative transducer serves as the transducer and is capable of detecting a signal propagating in the neuron. A network of neuroelectric devices that defines a logic device also is contemplated, which includes a plurality of neurons each in electrical communication with another neuron. The neurons are provided in synaptic relationship so that a signal propagating in one neuron can be attenuated upon stimulation of another neuron.
摘要:
The invention provides a nutrient medium composition and associated methods for lengthening the useful life of a culture of muscle cells. Disclosed is a method of culturing mammalian muscle cells, including preparing one or more carriers coated with a covalently bonded monolayer of trimethoxy-silylpropyl-diethylenetriamine (DETA); verifying DETA monolayer formation by one or more associated optical parameters; suspending isolated fetal rat skeletal muscle cells in serum-free medium according to medium composition 1; plating the suspended cells onto the prepared carriers at a predetermined density; leaving the carriers undisturbed for cells to adhere to the DETA monolayer; covering the carriers with a mixture of medium 1 and medium 2; and incubating. A cell nutrient medium composition includes Neurobasal, an antibiotic-antimycotic composition, cholesterol, human TNF-alpha, PDGF BB, vasoactive intestinal peptides, insulin-like growth factor 1, NAP, r-Apolipoprotein E2, purified mouse Laminin, beta amyloid, human tenascin-C protein, rr-Sonic hedgehog Shh N-terminal, and rr-Agrin C terminal.
摘要:
A method of screening a compound for effectiveness in treating amyloid beta neurotoxicity comprises culturing mammalian neurons in serum-free defined medium until the neurons are electrically functional, exposing the electrically stable neurons to amyloid beta, monitoring the exposed neurons for impairment of electrical functionality, and treating the exposed neurons with the candidate drug while monitoring their electrical activity for reversal of impairment. The invention also includes a method of identifying a mammalian neuron having a biological marker conferring predisposition to development of Alzheimer's disease, the method comprising culturing the mammalian neuron in serum-free medium until the neuron is electrically functional, exposing the electrically stable neuron to amyloid beta while monitoring for impairment of electrical functionality as an indicator of presence of said biological marker, and verifying presence of the biological marker by treating the impaired neuron with an anti-amyloidogenic compound while monitoring for return of neuron functionality.