摘要:
A substrate comprising a first transistor element and a second transistor element is provided. A layer of a material is deposited over the first transistor element and the second transistor element. A portion of the layer of material is modified, which may be done, e.g., by irradiating the portion with ions or performing an isotropic etching process to reduce its thickness. An etching process adapted to remove the modified portion of the layer of material more quickly than an unmodified portion of the layer located over the second transistor element is performed.
摘要:
A substrate comprising a first transistor element and a second transistor element is provided. A layer of a material is deposited over the first transistor element and the second transistor element. A portion of the layer of material is modified, which may be done, e.g., by irradiating the portion with ions or performing an isotropic etching process to reduce its thickness. An etching process adapted to remove the modified portion of the layer of material more quickly than an unmodified portion of the layer located over the second transistor element is performed.
摘要:
When forming the strain-inducing semiconductor alloy in one type of transistor of a sophisticated semiconductor device, superior thickness uniformity of a dielectric cap material of the gate electrode structures may be achieved by forming encapsulating spacer elements on each gate electrode structure and providing an additional hard mask material. Consequently, in particular, in sophisticated replacement gate approaches, the dielectric cap material may be efficiently removed in a later manufacturing stage, thereby avoiding any irregularities upon replacing the semiconductor material by an electrode metal.
摘要:
A method and a semiconductor device are provided in which respective contact layers having a specific intrinsic stress may be directly formed on respective metal silicide regions without undue metal silicide degradation during an etch process for removing an unwanted portion of an initially deposited contact layer. Moreover, due to the inventive concept, the strain-inducing contact layers may be formed directly on the respective substantially L-shaped spacer elements, thereby enhancing even more the stress transfer mechanism.
摘要:
By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
摘要:
When forming the strain-inducing semiconductor alloy in one type of transistor of a sophisticated semiconductor device, superior thickness uniformity of a dielectric cap material of the gate electrode structures may be achieved by forming encapsulating spacer elements on each gate electrode structure and providing an additional hard mask material. Consequently, in particular, in sophisticated replacement gate approaches, the dielectric cap material may be efficiently removed in a later manufacturing stage, thereby avoiding any irregularities upon replacing the semiconductor material by an electrode metal.
摘要:
A strain-inducing semiconductor alloy may be formed on the basis of cavities which may have a non-rectangular shape, which may be maintained even during corresponding high temperature treatments by providing an appropriate protection layer, such as a silicon dioxide material. Consequently, a lateral offset of the strain-inducing semiconductor material may be reduced, while nevertheless providing a sufficient thickness of corresponding offset spacers during the cavity etch process, thereby preserving gate electrode integrity. For instance, P-channel transistors may have a silicon/germanium alloy with a hexagonal shape, thereby significantly enhancing the overall strain transfer efficiency.
摘要:
By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
摘要:
A strain-inducing semiconductor alloy may be formed on the basis of cavities which may have a non-rectangular shape, which may be maintained even during corresponding high temperature treatments by providing an appropriate protection layer, such as a silicon dioxide material. Consequently, a lateral offset of the strain-inducing semiconductor material may be reduced, while nevertheless providing a sufficient thickness of corresponding offset spacers during the cavity etch process, thereby preserving gate electrode integrity. For instance, P-channel transistors may have a silicon/germanium alloy with a hexagonal shape, thereby significantly enhancing the overall strain transfer efficiency.
摘要:
By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.