摘要:
The present invention relates to a method for producing a vertical interconnect structure, a memory device and an associated production method, in which case, after the formation of a contact region in a carrier substrate a catalyst is produced on the contact region and a free-standing electrically conductive nanoelement is subsequently formed between the catalyst and the contact region and embedded in a dielectric layer.
摘要:
A method for producing memory cells, in which an electrically conductive substrate is provided, a trench structure or cup structure with side walls and a base is formed in or on the substrate, a first insulation layer is deposited at the side walls, a capacitor material is deposited on the base, a nanostructure is grown starting from and electrically connected to the catalyst material deposited on the base, a second insulation layer is deposited on the nanostructure and on the base, and finally an electrically conductive layer is deposited as a counterelectrode on the first insulation layer and second insulation layer.
摘要:
The present invention relates to a method for producing a vertical interconnect structure, a memory device and an associated production method, in which case, after the formation of a contact region in a carrier substrate a catalyst is produced on the contact region and a free-standing electrically conductive nanoelement is subsequently formed between the catalyst and the contact region and embedded in a dielectric layer.
摘要:
The present invention relates to a method for producing a vertical interconnect structure, a memory device and an associated production method, in which case, after the formation of a contact region in a carrier substrate a catalyst is produced on the contact region and a free-standing electrically conductive nanoelement is subsequently formed between the catalyst and the contact region and embedded in a dielectric layer.
摘要:
The present invention relates to a method for producing a vertical interconnect structure, a memory device and an associated production method, in which case, after the formation of a contact region in a carrier substrate a catalyst is produced on the contact region and a free-standing electrically conductive nanoelement is subsequently formed between the catalyst and the contact region and embedded in a dielectric layer.
摘要:
The present invention relates to a method for producing a vertical interconnect structure, a memory device and an associated production method, in which case, after the formation of a contact region in a carrier substrate a catalyst is produced on the contact region and a free-standing electrically conductive nanoelement is subsequently formed between the catalyst and the contact region and embedded in a dielectric layer.
摘要:
The present invention relates to a method for producing a vertical interconnect structure, a memory device and an associated production method, in which case, after the formation of a contact region in a carrier substrate a catalyst is produced on the contact region and a free-standing electrically conductive nanoelement is subsequently formed between the catalyst and the contact region and embedded in a dielectric layer.
摘要:
The present invention relates to a method for producing a vertical interconnect structure, a memory device and an associated production method, in which case, after the formation of a contact region in a carrier substrate a catalyst is produced on the contact region and a free-standing electrically conductive nanoelement is subsequently formed between the catalyst and the contact region and embedded in a dielectric layer.
摘要:
A memory cell includes a first electrode comprising a nanowire, a second electrode, and phase-change material between the first electrode and the second electrode.
摘要:
A method for producing memory cells, in which an electrically conductive substrate is provided, a trench structure or cup structure with side walls and a base is formed in or on the substrate, a first insulation layer is deposited at the side walls, a capacitor material is deposited on the base, a nanostructure is grown starting from and electrically connected to the catalyst material deposited on the base, a second insulation layer is deposited on the nanostructure and on the base, and finally an electrically conductive layer is deposited as a counterelectrode on the first insulation layer and second insulation layer.