摘要:
Methods which increase the bioavailability of beneficial gases in the circulatory system are provided. The methods involve administering agents that changes the binding affinity of a medicinal gas such as NO, CO, H2S, N2O, SO, SO2 and O2 for Hb and/or hemoglobin based oxygen carriers (HBOCs). The change results in increased release of gases carried by Hb and HBOCs. As a result, the concentration of the OH gases in circulation is raised, and they are more available to exert their beneficial effects, e.g. in the treatment of disease or conditions caused by low levels of the gases. The methods are optionally used together with administration of medicinal gases and/or administration of HBOCs and/or other non-HBOC gas carriers such as PFC, and as (or in conjunction with) diagnostic methods.
摘要:
A decision-support system and computer implemented method automatically measures the midline shift in a patient's brain using Computed Tomography (CT) images. The decision-support system and computer implemented method applies machine learning methods to features extracted from multiple sources, including midline shift, blood amount, texture pattern and other injury data, to provide a physician an estimate of intracranial pressure (ICP) levels. A hierarchical segmentation method, based on Gaussian Mixture Model (GMM), is used. In this approach, first an Magnetic Resonance Image (MRI) ventricle template, as prior knowledge, is used to estimate the region for each ventricle. Then, by matching the ventricle shape in CT images to the MRI ventricle template set, the corresponding MRI slice is selected. From the shape matching result, the feature points for midline estimation in CT slices, such as the center edge points of the lateral ventricles, are detected. The amount of shift, along with other information such as brain tissue texture features, volume of blood accumulated in the brain, patient demographics, injury information, and features extracted from physiological signals, are used to train a machine learning method to predict a variety of important clinical factors, such as intracranial pressure (ICP), likelihood of success a particular treatment, and the need and/or dosage of particular drugs.
摘要:
Bleeding from blood vessels located in difficult-to-compress regions of the body (especially the abdomen, pelvic or groin region) is controlled by the use of a portable, small-footprint belt-like device that contains multiple inflatable bladders. The inflatable bladders are selectively positioned and inflated over exsanguinating blood vessels, thereby exerting pressure to stop the bleeding. The device may also be used to provide perfusion support in low flow disease states such as hemorrhagic shock and cardiac arrest.
摘要:
This invention provides articles of manufacture and bandages comprising compartments and layers comprising oxygen and other therapeutic gas storage forms and perfluorocarbons. This invention also provides for methods of delivering oxygen and other therapeutic gases to a tissue in a subject comprising a administering to the tissue a composition comprising a perfluorocarbon and a oxygen or therapeutic gas storage form, so as to thereby deliver oxygen or the therapeutic gas to the tissue.
摘要:
In an emergency medicine patient, accurate measurement of change or lack thereof from non-shock, non-ischemic, non-inflammation, non-tissue injury, non-immune dysfunction conditions is important and is provided, as practical, real-time approaches for accurately characterizing a patient's condition, using Raman (3) and/or fluorescence (30) spectroscopy with a high degree of accuracy. Measurement times are on the order of seconds. High-accuracy measurement is achieved with Raman spectroscopy interrogation of tissue. Simultaneous interrogation by NADH fluorescence spectroscopy may he used. Measurements may be non-invasive to minimally invasive. Preclinical (ultra-early) states of shock can be detected (5), severity can be determined, effectiveness of various treatments can be determined.
摘要:
A non-invasive method and apparatus for at least partially occluding the descending aorta of a patient and for manipulating core and cerebral temperature includes positioning an elongated tubular member which may have a moveable surface through the esophagus and displacing the moveable surface thereby applying a force posteriorly in the direction of the patient's descending aorta sufficient to partially or substantially completely occlude the descending aorta. The tubular member may include a heat exchange surface and a heat transfer mechanism for transferring heat to the heat transfer surface or for transferring heat from the heat transfer surface in order to modify the temperature of a portion of the patient.
摘要:
Compositions comprising clay minerals and methods for their use in promoting hemostasis are provided. The compositions comprise clay minerals such as bentonite, and facilitate blood clotting when applied to a hemorrhaging wound. Electrospun or electrosprayed materials (e.g. bandages, micron beads, etc.) which include clay minerals, and methods for the treatment of acute hemorrhage, are also provided.
摘要:
Real-time, short-term analysis of ECG, by using multiple signal processing and machine learning techniques, is used to determine counter shock success in defibrillation. Combinations of measures when used with machine learning algorithms readily predict successful resuscitation, guide therapy and predict complications. In terms of guiding resuscitation, they may serve as indicators and when to provide counter shocks and at what energy levels they should be provided as well as to serve as indicators of when certain drugs should be provided (in addition to their doses). For cardiac arrest, the system is meant to run in real time during all current resuscitation procedures including post-resuscitation care to detect deterioration for guiding care such as therapeutic hypothermia.
摘要:
Accurate pelvic fracture detection is accomplished with automated X-ray and Computed Tomography (CT) images for diagnosis and recommended therapy. The system combines computational methods to process images from two different modalities, using Active Shape Model (ASM), spline interpolation, active contours, and wavelet transform. By processing both X-ray and CT images, features which may be visible under one modality and not under the other are extracted and validates and confirms information visible in both. The X-ray component uses hierarchical approach based on directed Hough Transform to detect pelvic structures, removing the need for manual initialization. The X-ray component uses cubic spline interpolation to regulate ASM deformation during X-ray image segmentation. Key regions of the pelvis are first segmented and identified, allowing detection methods to be specialized to each structure using anatomical knowledge. The CT processing component is able to distinguish bone from other non-bone objects with similar visual characteristics, such a blood and contrast fluid, permitting detection and quantification of soft tissue hemorrhage. The CT processing component draws attention to slices where irregularities are detected, reducing the time to fully examine a pelvic CT scan. The quantitative measurement of bone displacement and hemorrhage area are used as input for a trauma decision-support system, along with physiological signals, injury details and demographic information.
摘要:
A real-time decision-support system predicts hemorrhagic shock of a patient by analysis of electrocardiogram (ECG) signals and transcranial Doppler (TCD) signals from the patient. These signals are subject to signal decomposition using Discrete Wavelet Transform (DWT) to sets of wavelet coefficients and selecting significant signal features. Machine learning is applied to the significant features to evaluate and classify hypovolemia severity based on the input ECG and TCD signals from the patient. The classification of blood loss severity is displayed in real-time. An extension of the decision-support system integrates Arterial Blood Pressure (ABP) signals and thoracic electrical bio-impedance (DZT) signals with the ECG and TCD signals from the patient to evaluate severity of hypovolemia.