摘要:
This invention relates to a photosensitive material for electrophotography having, on a substrate, an amorphous silicon layer comprising silicon atom as the matrix and containing at least one of hydrogen atom, halogen atom and heavy hydrogen atom, characterized by provided with a porous aluminum oxide layer between said substrate and said amorphous silicon layer.This invention further relates to a photosensitive material for electrophotography having, on a substrate, an amorphous silicon layer comprising silicon atom as the matrix and containing at least one of hydrogen atom, halogen atom and heavy hydrogen atom, characterized by provided with a porous aluminum oxide layer having the surface treated with a silicide material between said substrate and said amorphous silicon layer.
摘要:
The present invention is concerned with a photosensitive material for electrophotography that comprises forming a photosensitive layer on a substrate, wherein said photosensitive layer is constructed by laminating a charge transfer layer, a first charge carrier generating layer and a second charge carrier generating layer in order from said substrate side to free surface, and said charge transfer layer and second charge carrier generating layer each has a band gap wider than that of said first charge carrier generating layer.
摘要:
A photoelectric device suitable for use as an image sensor includes a body of amorphous silicon and a pair of electrodes sandwiching the body. The amorphous silicon body includes at least one kind of oxygen, carbon, and nitrogen atoms and it has an ability to exhibit a predetermined level of photoconductivity for an optical bandgap of 2.0 eV or more. The amorphous silicon body may have either a mono-layered structure or a multi-layered structure. In the latter case, the body may have a p-i-n structure.
摘要:
A photoconductive material comprises a photocarrier generating zone using a wide-band gap material and a photocarrier moving zone using an amorphous silicon material. A photocarrier generating zone including a silicon atom as a principal atom comprises an amorphous silicon which contains at least one kind of atom selected from a group including oxygen, nitrogen and carbon and also contains an atom which terminates a dangling bond of a silicon. This photoconductive material can be used for various devices because of its wide-band gap and high photosensitivity.
摘要:
A photoconductive material comprises a photocarrier generating zone using a wide-band gap material and a photocarrier moving zone using an amorphous silicon material. A photocarrier generating zone including a silicon atom as a principal atom comprises an amorphous silicon which contains at least one kind of atom selected from a group including oxygen, nitrogen and carbon and also contains an atom which terminates a dangling bond of a silicon. This photoconductive material can be used for various devices because of its wide-band gap and high photosensitivity.
摘要:
An optical recording apparatus comprises: a focusing section that focuses to a transmission type recording medium a recording light beam including a signal light beam and a reference light beam which are radiated from a same direction with a common optical axis; and a focused-position moving section that moves with respect to a direction of the optical axis a focused position where the recording light beam is focused to the transmission type recording medium by the focusing section, wherein an interference fringe formed by the recording light beam is recorded in the transmission type recording medium at each position which is moved by the focused-position moving section.
摘要:
There is provided a hologram recording method, including generating a signal light which is spatially modulated such that digital data is represented by an image of intensity distribution, irradiating the signal light on an optical recording medium after a Fourier transformation of the signal light such that a zero-order component of the signal light comes into focus at a point removed from the optical recording medium, forming a diffraction grating in the optical recording medium by interference between the zero-order component of the signal light and a high-order component thereof, and recording digital data represented by the signal light as a hologram.
摘要:
There is provided a hologram recording method including: generating light of a pattern in which a plurality of unit blocks, which include at least one pixel and express luminance, are arrayed, the pattern being sectioned into a region of a signal beam and a region of a reference beam, and being generated such that the region of the reference beam includes a plurality of unit blocks whose numbers of pixels are different; collecting the generated light at a common optical system, and illuminating it onto an optical recording medium; and recording, as a hologram, data which the signal beam expresses.
摘要:
A hologram reproduction method for reproducing a hologram from an optical recording medium in which the hologram is recorded by Fourier transforming a signal light, in which digital data is represented by an image of intensity distribution, and a reference light, and simultaneously irradiating the lights in a state in which a direct current component is removed from at least the Fourier transformed signal light onto the optical recording medium is provided. The method including: irradiating a read out reference light onto the optical recording medium, and generating a diffracted light from the recorded hologram; generating all or a part of a direct current component contained in a Fourier transformed image of the signal light; combining the diffracted light and the generated all or a part of the direct current component, and generating a combined beam; and reproducing the signal light by inverse-Fourier transforming the combined beam.
摘要:
According to an aspect of the invention, there is provided a holographic recording medium including a recording layer in which information is recorded by irradiating a signal light and a reference light simultaneously to the layer, and a reflecting track on which a servo signal light is reflected, the reflecting track being formed on or above a recording layer surface to which the signal light is irradiated.