摘要:
Right front wheel units (FL, FR) are driven independently by motor generators (MGL, MGR). A power control unit (1) is provided common to the motor generators (MGL, MGR) and integrally controls driving them. Each motor generator (MGL, MGR) and the power control unit (1) are selectively connected by switch circuits (SWL, SWR). The switch circuits (SWL, SWR) are switched by an ECU (3), as appropriate, in accordance with how the vehicle (100) is currently traveling (i.e., a driving force that the vehicle is required to output, and a direction in which the vehicle is traveling). In other words, the vehicle (100) can selectively implement traveling with the left and right front wheel units (FL, FR) both serving as driving wheel units, and traveling with only one of the left and right front wheel units (FL, FR) serving as a driving wheel unit, depending on how the vehicle is currently traveling.
摘要:
A motor includes a stator, a case and a supporting portion. The stator formed by laminating plural disc plates includes a yoke portion having a plurality of first and second portions alternately formed in a circumferential direction of the stator, and plural tooth portions respectively radially protruding from an inner circumferential surface the yoke portion at the second portion of the yoke portion towards an axial center of the stator. The case provided at an outer circumference of the stator includes a first communicating passage extending in an axial direction of the stator to be in communication with both axial ends of the stator and defined by an inner circumferential surface of the case. The supporting portion protrudes from an inner circumferential surface of the first communicating passage towards the stator and contacts an outer surface of the stator at one of the first portions of the stator.
摘要:
Front left and right wheel units (FL, FR) are driven by an engine (ENG) and a motor generator (MG2). Rear left and right wheel units (RL, RR) are independently driven by in-wheel motor type motor generators (MGR, MGL). The motor generator (MG2) and the motor generator (MGR, MGL) are configured to have different rated outputs, respectively, and be subjected to different speed reduction ratios, respectively, between the motor generators and their respectively associated drive wheel units, and thus have characteristics, respectively, in efficiency with respect to torque and vehicular speed, that exhibit high efficiency in mutually different output ranges, respectively. When a mileage oriented mode is selected as a traveling mode, an ECU (30) determines how a drive torque should be allocated between the motor generators (MG2, MGR, MGL), as based on the motors' required drive torque and vehicular speed and on each motor generator's characteristic in efficiency, to maximize the motor generators' total efficiency.
摘要:
In a synchronous reluctance motor having a rotor having a plurality of pairs of an outer side slot formed at an outer periphery side and an inner side slot formed at inner side of the rotor. The distance between the outer periphery of the rotor and the outer side slot is determined to be the width of the stator magnetic pole portion of the stator multiplied by 0.7 to 1.3. A first total magnetic flux amount of an outer side permanent magnet disposed in the outer side slot is determined to be larger than or equal to a second total magnetic flux amount of an inner side permanent magnet disposed in the inner side slot.
摘要:
Right front wheel units (FL, FR) are driven independently by motor generators (MGL, MGR). A power control unit (1) is provided common to the motor generators (MGL, MGR) and integrally controls driving them. Each motor generator (MGL, MGR) and the power control unit (1) are selectively connected by switch circuits (SWL, SWR). The switch circuits (SWL, SWR) are switched by an ECU (3), as appropriate, in accordance with how the vehicle (100) is currently traveling (i.e., a driving force that the vehicle is required to output, and a direction in which the vehicle is traveling). In other words, the vehicle (100) can selectively implement traveling with the left and right front wheel units (FL, FR) both serving as driving wheel units, and traveling with only one of the left and right front wheel units (FL, FR) serving as a driving wheel unit, depending on how the vehicle is currently traveling.
摘要:
A motor includes a rotor, a rotor core included in the rotor, the rotor core being configured to be embedded, therein, with at least one first magnet, a pair of end plates, one of the pair of end plates being positioned at an axial end of the motor, an other one of the pair of end plates being positioned at an other axial end of the motor, and the pair of end plates holding the rotor core at axial ends of the rotor core, and at least one second magnet embedded in the pair of end plates and supplying magnetic fields in an axial direction of the motor.
摘要:
To provide a three-phase synchronous reluctance motor which allows its stator to be formed compact by means of reduction in the width of a part of a back yoke portion of a stator while avoiding excessive increase in the magnetic resistance of the magnetic path of the back yoke portion. The includes a rotor (200) and a stator (100) having a plurality of teeth (103) formed in an inner face thereof along a peripheral direction and in opposition to the rotor (200), six of the teeth being in opposition to one of a plurality of rotor magnetic poles provided in the rotor, the stator having stator windings by a coil pitch corresponding to five teeth of the six teeth. At a position in a back yoke portion (104) of the stator corresponding to a tooth (103) adjacent a tooth located between an adjacent pair of the stator windings which form magnetic poles in a same phase and with different polarities in a three-phase drive mode, there is provided at least one width reducing portion (101) which renders a width of a magnetic path of the back yoke portion (104) of the stator reduced relative to a magnetic patch of the back yoke portion corresponding to the other teeth.
摘要:
In a synchronous reluctance motor having a rotor having a plurality of pairs of an outer side slot formed at an outer periphery side and an inner side slot formed at inner side of the rotor. The distance between the outer periphery of the rotor and the outer side slot is determined to be the width of the stator magnetic pole portion of the stator multiplied by 0.7 to 1.3. A first total magnetic flux amount of an outer side permanent magnet disposed in the outer side slot is determined to be larger than or equal to a second total magnetic flux amount of an inner side permanent magnet disposed in the inner side slot.
摘要:
A motor includes a rotor, a rotor core included in the rotor, the rotor core being configured to be embedded, therein, with at least one first magnet, a pair of end plates, one of the pair of end plates being positioned at an axial end of the motor, an other one of the pair of end plates being positioned at an other axial end of the motor, and the pair of end plates holding the rotor core at axial ends of the rotor core, and at least one second magnet embedded in the pair of end plates and supplying magnetic fields in an axial direction of the motor.