摘要:
A method for manufacturing a semiconductor wafer with a strained Si layer having sufficient tensile strain and few crystal defects, while achieving a relatively simple layered structure, is provided. The method includes the steps of: (a) forming an SiGe mixed crystal layer 12 and a first Si layer 13 in this order on the surface of a silicon wafer 11; (b) forming an SiO2 layer 16 on top of the first Si layer and/or a support wafer 14; (c) forming a layered product 17 by stacking the silicon wafer and the support wafer with the SiO2 layer being placed therebetween; (d) forming a second Si layer 18 by thinning the silicon wafer of the layered product; (e) implanting hydrogen ion and/or rare gas ion, such that ionic concentration peaks in a predetermined area; (f) subjecting the layered product to a first heat treatment; and (g) carrying out a second heat treatment following the first heat treatment, thereby relaxing the SiGe mixed crystal layer and diffusing Ge through portions of the first Si layer and the second Si layer.
摘要:
A strained Si—SOI substrate, and a method for producing the same are provided, wherein the method includes the steps of growing a SiGe mixed crystal layer 14 on an SOI substrate 10 having an Si layer 13 and a buried oxide film 12; forming protective films 15, 16 on the surface of the SiGe mixed crystal layer 14; implanting light element ions into a vicinity of the interface between the Si layer 13 and the buried oxide film 12; performing a first heat treatment at a temperature in the range of 400 to 1000° C.; performing a second heat treatment at a temperature not lower than 1050° C. under an oxidizing atmosphere; performing a third heat treatment at a temperature not lower than 1050° C. under an inert atmosphere; removing the Si oxide film 18 formed on the surface; and forming a strained Si layer 19.
摘要:
A strained Si-SOI substrate is produced by a method comprising: growing a SiGe mixed crystal layer on an SOI substrate having a Si layer of not less than 5 nm in thickness and a buried oxide layer; forming a protective film on the SiGe mixed crystal layer; implanting light element ions into a vicinity of an interface between the silicon layer and the buried oxide layer; a first heat treatment for heat treating the substrate at a temperature of 400 to 1000° C. in an inert gas atmosphere; a second heat treatment for heat treating the substrate at a temperature not lower than 1050° C. in an oxidizing atmosphere containing chlorine; removing an oxide film from the surface of the substrate, and forming a strained silicon layer on the surface of the substrate.
摘要:
A strained Si-SOI substrate, and a method for producing the same are provided, wherein the method includes the steps of growing a SiGe mixed crystal layer 14 on an SOI substrate 10 having an Si layer 13 and a buried oxide film 12; forming protective films 15, 16 on the surface of the SiGe mixed crystal layer 14; implanting light element ions into a vicinity of the interface between the Si layer 13 and the buried oxide film 12; performing a first heat treatment at a temperature in the range of 400 to 1000° C.; performing a second heat treatment at a temperature not lower than 1050° C. under an oxidizing atmosphere; performing a third heat treatment at a temperature not lower than 1050° C. under an inert atmosphere; removing the Si oxide film 18 formed on the surface; and forming a strained Si layer 19.
摘要:
A method for manufacturing a semiconductor wafer with a strained Si layer having sufficient tensile strain and few crystal defects, while achieving a relatively simple layered structure, is provided. The method includes the steps of: (a) forming an SiGe mixed crystal layer 12 and a first Si layer 13 in this order on the surface of a silicon wafer 11; (b) forming an SiO2 layer 16 on top of the first Si layer and/or a support wafer 14; (c) forming a layered product 17 by stacking the silicon wafer and the support wafer with the SiO2 layer being placed therebetween; (d) forming a second Si layer 18 by thinning the silicon wafer of the layered product; (e) implanting hydrogen ion and/or rare gas ion, such that ionic concentration peaks in a predetermined area; (f) subjecting the layered product to a first heat treatment; and (g) carrying out a second heat treatment following the first heat treatment, thereby relaxing the SiGe mixed crystal layer and diffusing Ge through portions of the first Si layer and the second Si layer.
摘要:
A semiconductor wafer is produced at a step of forming a lattice relaxation or a partly lattice-relaxed strain relaxation SiGe layer on an insulating layer in a SOI wafer comprising an insulating layer and a SOI layer, wherein at least an upper layer side portion of the SiGe layer is formed on the SOI layer at a gradient of Ge concentration gradually decreasing toward the surface and then subjected to a heat treatment in an oxidizing atmosphere.
摘要:
A semiconductor wafer is produced at a step of forming a lattice relaxation or a partly lattice-relaxed strain relaxation SiGe layer on an insulating layer in a SOI wafer comprising an insulating layer and a SOI layer, wherein at least an upper layer side portion of the SiGe layer is formed on the SOI layer at a gradient of Ge concentration gradually decreasing toward the surface and then subjected to a heat treatment in an oxidizing atmosphere.
摘要:
The objective of this invention is to provide a manufacturing method wherewith optimally low-COP substrates can be efficiently manufactured for epitaxial wafers in order to obtain high epitaxial surface quality that will not have an adverse effect on device characteristics. A phenomenon was discovered whereby COPs are eliminated by solution annealing or flattening when epitaxial films are formed on wafers wherein the density of grown-in defects (COPs) with a size of 0.130 &mgr;m or larger is 0.03 defects/cm2 or lower, the use of which phenomenon is characteristic of the invention. For example, by pulling a monocrystal while deliberately controlling the carbon concentration therein to within a prescribed high range, and employing wafers cut from silicon monocrystal ingots grown with a pulling speed wherewith no OSF-ring outer region is present in the wafer surface, wafers having the low COP densities noted above are obtained, and the COPs are eliminated by solution-annealing or flattening when forming the epitaxial film, wherefore high-quality epitaxial wafers can be manufactured with good yield.
摘要:
A semiconductor substrate manufacturing method has a first layer formation process, a second layer formation process, a heat treatment process, and a polishing process; in the first layer formation process, the thickness of the first SiGe layer is set to less than twice the critical thickness, which is the film thickness at which dislocations appear and lattice relaxation occurs due to increasing film thickness; in the second layer formation process, the Ge composition ratio of the second SiGe layer is at least at the contact face with the first SiGe layer or with the Si layer, set lower than the maximum value of the Ge composition ratio in the first SiGe layer, and moreover, a gradient composition region in at least a portion of which the Ge composition ratio increases gradually toward the surface is formed. By this means, the penetrating dislocation density is kept low, surface roughness is low, and worsening of roughness at the surface and at interfaces due to heat treatment in device manufacturing processes or similar is prevented.
摘要:
In a semiconductor substrate, a field effect transistor, and methods for producing the same, in order to lower threading dislocation density and also to lower surface roughness, a step of repeating, a plurality of times, a process of epitaxially growing a SiGe gradient composition layer of which a Ge composition ratio is gradually increased from a Ge composition ratio of a base material and a process of epitaxially growing a SiGe constant-composition layer on the gradient composition layer at a final Ge composition ratio of the gradient composition layer, thereby depositing a SiGe layer of which a Ge composition ratio changes in a film deposition direction, in a step-like manner with a gradient, a heat treatment step of performing heat treatment at a temperature exceeding a temperature of the epitaxial growth either during or after formation of the SiGe layer, and a polishing step of polishing to remove irregularities on a surface of the SiGe layer which arise in the heat treatment after formation of the SiGe layer are included.