摘要:
A light detector includes a plurality of light receiving sections which are formed in a substrate and generate signal charges corresponding to the amount of incident light, and a plurality of wirings which are formed on the substrate and fetch the signal charges from the light receiving sections, wherein at least some of the plurality of wirings are disposed so as to overlap with other light receiving sections different from the light receiving sections connected to fetch the signal charges.
摘要:
A radiation detector is provided that provides fast sequential image acquisition. In one embodiment, the radiation detector a diode capacitor that is charged in response to a radiation exposure event. The charge stored in the diode capacitor is transferred to a separate storage capacitor, allowing a new charge to be generated and stored at the diode capacitor.
摘要:
A light block material disposed over the photosensitive region of a switching device (e.g., TFT) of a radiation imager is disclosed. The light block material prevents optical photons emitted from a scintillator from passing into the switching device and being absorbed. Cross-talk and noise in the imager are thereby reduced. Also, non-linear pixel response and spurious signals passing to readout electronics are avoided. Optionally, opaque caps comprising the same light block material may be included in the imager structure. The caps cover contact vias filled with a common electrode and located in the contact finger region of the imager. The integrity of the filled vias is thereby maintained during subsequent processing. Also disclosed is a radiation imager containing these structures.
摘要:
A radiation imager having a plurality of photosensitive elements has a two-tier passivation layer disposed between the top patterned common electrode contact layer and respective photosensor islands. The top passivation layer is a polymer bridge member disposed between adjacent photodiodes so as to isolate defects such as moisture-induced leakage in any bridge island layer to the two adjacent photodiodes spanned by the bridge island.
摘要:
A solid-state imager with back-side irradiation. The present invention provides a solid-state imager that includes a substantially radiation transparent substrate adapted to receive incident radiation. The radiation travels through the substrate and a pixelated array of photosensitive elements to a scintillator material, which absorbs the radiation. The pixelated array of photosensitive elements receives light photons and measures the amount of light generated by radiation interactions with the scintillator material. With this imager, there is less spreading and blurring and thus a better quality image. In another embodiment, there is a substantially transparent material disposed between the pixelated array of photosensitive elements and the scintillator material. The substantially transparent material absorbs and substantially blocks electrons from entering the active regions of the pixelated array of photosensitive elements. This enables the imager to perform for a longer period of time according to its specifications.
摘要:
An imaging array of photodiodes on a chip cut from a semiconductor wafer includes a guard diode at each cut edge to reduce leakage current from the cut edges when the imaging array is in use. The photodiodes and guard diode may be fabricated from the same materials during the same process step. Electrical contacts coupled to the imaging array provide a mechanism for applying a reverse electrical bias to the photodiodes and guard region with respect to the wafer.
摘要:
RD-25953-17-A method of fabricating an imager array having a plurality of pixels is provided in which each pixel is made up of a photodiode and a corresponding thin film transistor (TFT) switching device, the method including the steps of depositing materials to form the photodiode island and to form a TFT body over a gate electrode, then depositing a layer of source/drain metal over the silicon layers of the TFT body, and over a common dielectric layer, removing sections of the source/drain metal layer to expose a portion of the silicon layers of the TFT body, but leaving regions of sacrificial source/drain metal over the photodiode islands, and forming a back channel in the TFT body by a back channel etch step. The method further includes then removing the sacrificial regions of source/drain metal from above the photodiode islands, and depositing a passivation layer over the entire exposed surface of the array.
摘要:
A radiation detector includes a top gate thin film transistor (TFT) including a source electrode, a drain electrode, a gate electrode, a first dielectric layer, and a second dielectric layer, wherein the second dielectric layer is extending over a surface of the first dielectric layer. The radiation detector also includes a capacitor that includes at least two electrodes and a dielectric layer. The capacitor dielectric layer is formed unitarily with the TFT second dielectric layer.
摘要:
A photodiode detector array includes a layer of intrinsic semiconductor material having a first doped layer on a first surface of a first conductivity type and an array of photodiodes having respective doped regions on a second surface of an opposite conductivity type. Electrical contacts on the second surface respectively contact the doped regions and convey electrical signal therefrom. Conductors extend from the electrical contacts to convey the electrical signals to output terminals of the array. A scintillator is optically coupled to the layer of intrinsic semiconductor material at the first surface thereof and can be pixelated, with individual scintillator elements aligned with and corresponding to the doped regions of the photodiode. The photodiode detector array can be mounted to a rigid printed wiring board or to a flat bottom wall surface of the scintillator.
摘要:
In an imager having an array of light-sensitive elements and employing striped common electrodes, exposed edges of preimidized polyimide layers above the light-sensitive imaging elements are sealed with the material of the common electrode (e.g., indium tin oxide). Similarly, exposed preimidized polyimide edges in electrical contacts for the array and bridge members electrically coupling adjacent light-sensitive imaging elements are also sealed with the material of the common electrode.