Abstract:
Locating a fault of a transmission line in a system which performs bidirectional optical communication between a station-side device and plural subscriber devices and in which a transmission line 1 extending from the station-side device is branched by a branching/coupling device into plural transmission lines 2 each connected to the subscriber devices. The present invention provides a supervisory unit to the transmission line 1 and attenuators to respective transmission lines 2. The supervisory unit emits an optical test signal, observes a reflected signal of the test signal while changing the attenuation of the attenuators and locates the fault based on a return time and a return loss when the test signal returns as a reflected signal.
Abstract:
In bidirectional optical burst transmission using a single optical fiber, a signal is reliably discriminated even if reflected light is contained in a received optical signal. According to a first aspect of the invention, the received signal converted into an electrical signal is compared with a prescribed reference voltage, thereby generating a signal light identification voltage output for identifying the beginning of the signal light. According to a second aspect of the invention, a peak value and a bottom value of the received signal are held with respectively prescribed time constants, and a voltage intermediate between them is generated as a voltage output used to discriminate the signal light. According to a third object of the invention, the waveform only of the reflected light is detected and stored, and a signal light voltage output with the reflected light suppressed is generated by subtracting the stored waveform from the received signal.
Abstract:
An ultrasonic flow meter for measuring a flow rate in a flow path is provided having ultrasonic sensors each of which includes a semicircular or substantially circular disk shaped transducer. Such transducers are detachably mountable on an envelope of the flow path. The thickness of the ultrasonic sensors in the direction of the length of the flow path is reduced to improve a detection resolution. A plurality of the ultrasonic sensors are mounted on the flow path while keeping a predetermined distance therebetween in a length direction of the flow path, so that the flow rate can be measured from the difference of propagation times of ultrasonic waves between the ultrasonic sensors.
Abstract:
A flow rate measuring apparatus capable of accurately measuring a flow rate of fluctuating fluid. A mode setting circuit selectively sets any one of a plurality of predetermined transmission modes different in transmission timing. The mode setting circuit sets any one of a first transmission mode which permits an ultrasonic wave to be transmitted at a predetermined timing for every period of a flow waveform of exhaust gas, a second transmission mode which permits an ultrasonic wave to be transmitted at a timing shifted by a predetermined time for every period of the flow waveform of the exhaust gas and a third transmission mode which permits an ultrasonic wave to be transmitted at predetermined intervals.
Abstract:
An incinerator designed so that the reaction of unburnt gas with oxygen progresses rapidly to thereby minimize the amount of unburnt gas generated therefrom. An intermediate portion of a combustion chamber is contracted in the cross-sectional direction with respect to the direction of flow of gas to thereby provide a throttling passage (14) over a predetermined distance. A part of the combustion chamber which is below the throttling passage (14) and a part of the combustion chamber which is above the passage (14) are enlarged in the cross-sectional direction to define a lower combustion chamber (13) and an upper combustion chamber (15), respectively. A first barrier (16) is disposed in the vicinity of the inlet of the throttling passage (14) across the lower combustion chamber (13) and a second barrier (17) is disposed in the vicinity of the outlet of the throttling passage (14) across the upper combustion chamber (15).
Abstract:
An optical transmitter includes a light source that outputs light superposed with a pilot signal having a predetermined frequency; an optical modulating unit that modulates the light from the light source according to an input electric signal; a detecting unit that detects a high-output-side maximum value of signal light output from the optical modulating unit, a fluctuation width of the high-output-side maximum value, and a fluctuation width of a low-output-side minimum value; a bias-potential adjusting unit that adjusts a bias potential of an electric signal to be input to the optical modulating unit based on the detected maximum value; and an amplitude adjusting unit that adjusts an amplitude of the electric signal to be input to the optical modulating unit based on the fluctuation width of the high-output-side maximum value and the fluctuation width of the low-output-side minimum value.
Abstract:
An optical transmitter includes: a modulating unit that modulates an optical signal based on an electric signal; a first detecting unit that detects a first variation width of a maximum output of the modulated optical signal; a second detecting unit that detects a second variation width of a minimum output of the modulated optical signal; a comparing unit that performs a comparison of the first variation width and the second variation width; and an adjusting unit that adjusts a bias potential of the electric signal based on a result of the comparison.
Abstract:
A power supply control circuit includes: a conducting part configured to be controllable in its a conducting amount for conducting a power supply current to a load circuit;a current change ratio detecting part detecting a change rate of the power supply current supplied to the load circuit; and a control part controlling the conducting amount of the conducting part according to the change rate of the power supply current detected by the current change detecting part, wherein: the control part carries out feedback control of reducing an increasing rate of the conducting part as the power supply current change rate is larger.
Abstract:
A power supply control circuit includes: a conducting part configured to be controllable in its a conducting amount for conducting a power supply current to a load circuit; a current change ratio detecting part detecting a change rate of the power supply current supplied to the load circuit; and a control part controlling the conducting amount of the conducting part according to the change rate of the power supply current detected by the current change detecting part, wherein: the control part carries out feedback control of reducing an increasing rate of the conducting part as the power supply current change rate is larger.
Abstract:
A circuit module includes: control object circuits which start operations when a power supply voltage reaches a target value; a current sink circuit which consumes a current supplied thereto; and a power supply activation control unit which increases the current flowing into the current sink circuit at a predetermined rate before starting the operations of the control object circuits and which starts the operations of the control object circuits and simultaneously blocks the supply of the current to the current sink circuit in a case where an amount of the current flowing into the current sink circuit is equivalent to an amount of current to be increased by starting the operations of the control object circuits when the power supply voltage reaches the target value.