Abstract:
An optical transmitter includes a light source that outputs light superposed with a pilot signal having a predetermined frequency; an optical modulating unit that modulates the light from the light source according to an input electric signal; a detecting unit that detects a high-output-side maximum value of signal light output from the optical modulating unit, a fluctuation width of the high-output-side maximum value, and a fluctuation width of a low-output-side minimum value; a bias-potential adjusting unit that adjusts a bias potential of an electric signal to be input to the optical modulating unit based on the detected maximum value; and an amplitude adjusting unit that adjusts an amplitude of the electric signal to be input to the optical modulating unit based on the fluctuation width of the high-output-side maximum value and the fluctuation width of the low-output-side minimum value.
Abstract:
An optical transmitter includes: a modulating unit that modulates an optical signal based on an electric signal; a first detecting unit that detects a first variation width of a maximum output of the modulated optical signal; a second detecting unit that detects a second variation width of a minimum output of the modulated optical signal; a comparing unit that performs a comparison of the first variation width and the second variation width; and an adjusting unit that adjusts a bias potential of the electric signal based on a result of the comparison.
Abstract:
A power supply control circuit includes: a conducting part configured to be controllable in its a conducting amount for conducting a power supply current to a load circuit;a current change ratio detecting part detecting a change rate of the power supply current supplied to the load circuit; and a control part controlling the conducting amount of the conducting part according to the change rate of the power supply current detected by the current change detecting part, wherein: the control part carries out feedback control of reducing an increasing rate of the conducting part as the power supply current change rate is larger.
Abstract:
A power supply control circuit includes: a conducting part configured to be controllable in its a conducting amount for conducting a power supply current to a load circuit; a current change ratio detecting part detecting a change rate of the power supply current supplied to the load circuit; and a control part controlling the conducting amount of the conducting part according to the change rate of the power supply current detected by the current change detecting part, wherein: the control part carries out feedback control of reducing an increasing rate of the conducting part as the power supply current change rate is larger.
Abstract:
A circuit module includes: control object circuits which start operations when a power supply voltage reaches a target value; a current sink circuit which consumes a current supplied thereto; and a power supply activation control unit which increases the current flowing into the current sink circuit at a predetermined rate before starting the operations of the control object circuits and which starts the operations of the control object circuits and simultaneously blocks the supply of the current to the current sink circuit in a case where an amount of the current flowing into the current sink circuit is equivalent to an amount of current to be increased by starting the operations of the control object circuits when the power supply voltage reaches the target value.
Abstract:
An optical transmitter includes a light source that outputs light superposed with a pilot signal having a predetermined frequency; an optical modulating unit that modulates the light from the light source according to an input electric signal; a detecting unit that detects a high-output-side maximum value of signal light output from the optical modulating unit, a fluctuation width of the high-output-side maximum value, and a fluctuation width of a low-output-side minimum value; a bias-potential adjusting unit that adjusts a bias potential of an electric signal to be input to the optical modulating unit based on the detected maximum value; and an amplitude adjusting unit that adjusts an amplitude of the electric signal to be input to the optical modulating unit based on the fluctuation width of the high-output-side maximum value and the fluctuation width of the low-output-side minimum value.
Abstract:
An ultrasonic flow meter for measuring a flow rate in a flow path is provided having ultrasonic sensors each of which includes a semicircular or substantially circular disk shaped transducer. Such transducers are detachably mountable on an envelope of the flow path. The thickness of the ultrasonic sensors in the direction of the length of the flow path is reduced to improve a detection resolution. A plurality of the ultrasonic sensors are mounted on the flow path while keeping a predetermined distance therebetween in a length direction of the flow path, so that the flow rate can be measured from the difference of propagation times of ultrasonic waves between the ultrasonic sensors.
Abstract:
The invention provides a method for measuring transmission loss in an optical transmission line between a master station and a slave station, and also a slave station, a master station and a star network communication system using this method. Power of an optical signal is measured at a second end of an optical transmission line connected with an added slave station and at a first end other than the second end. The result at the first end is stored in a storing unit or transmitted to an incorporating unit by a transferring unit. The incorporating unit incorporates the result into a downstream optical signal, which is transmitted to the slave station. In the slave station an information extracting unit extracts the result from the downstream optical signal, and a processing unit calculates a difference between the measurement results of the first and second ends to obtain transmission loss therebetween.
Abstract:
A clock generator including a frequency multiplier, a phase lock circuit and a frequency divider. The frequency multiplier generates a frequency multiplied clock by multiplying the frequency of an input clock. The phase lock circuit detects a phase difference between the input clock and a frequency divided clock, and generates, by delaying the frequency multiplied clock by an amount corresponding to the phase difference, a phase-locked clock with its phase locked with the input clock. The frequency divider detects in every fixed cycle a particular pulse of the phase-locked clock, and generates the frequency divided clock by dividing the phase-locked clock with reference to the particular pulse of the phase-locked clock. In particular, the frequency divider detects the particular pulse immediately previous to a falling edge of the input clock. This can reduce the phase difference between the input clock and the phase-locked clock, and hence to solve a problem of a conventional clock generator in that a delay time of a digital delay line in a phase lock circuit must be lengthened with a reduction in the multiplication number of the frequency multiplied clock, which requires a greater number of delay elements because of a large occupying area of the delay elements and a decoder, thereby increasing the circuit scale and cost of a chip to reduce the multiplication number of the frequency multiplied clock.
Abstract:
An ultrasonic flow meter for measuring a flow rate in a flow path is provided having ultrasonic sensors each of which includes a semicircular or substantially circular disk shaped transducer. Such transducers are detachably mountable on an envelope of the flow path. The thickness of the ultrasonic sensors in the direction of the length of the flow path is reduced to improve a detection resolution. A plurality of the ultrasonic sensors are mounted on the flow path while keeping a predetermined distance therebetween in a length direction of the flow path, so that the flow rate can be measured from the difference of propagation times of ultrasonic waves between the ultrasonic sensors.