摘要:
A temperature control method and apparatus, and a plasma processing apparatus are provided. The temperature control method includes the steps of, during an idle state in which a substrate processing is not performed, controlling a temperature of a heat transfer medium in a circulation channel by a second heat exchanger and a heater to control a temperature of an electrode to be maintained at a predetermined set temperature, and when a high frequency power is applied to the electrode to start the substrate processing, reducing the temperature of the heat transfer medium below the set temperature of the electrode through the use of a first heat exchanger and the second heat exchanger to maintain the temperature of the electrode at the set temperature.
摘要:
An electrostatic printing apparatus of the pressure fixing type having a toner image formed on a recording sheet fixed by applying pressure, including a tension imparting device for imparting to the recording sheet a tension oriented in the direction of travel of the recording sheet and a tension oriented in a direction perpendicular to the direction of its travel, and a regulating device for regulating the angle and posture of the recording sheet located in the path of movement of the recording sheet immediately before a pressure fixing roller device. The recording sheet is kept in taut condition as it is fed to the pressure fixing roller device to enable wrinkling, jamming and skewing of the recording sheet to be avoided.
摘要:
Before a substrate is processed in a plasma processing apparatus that inhibits an increase in the temperature of an upper electrode attributable to DC voltage application as well as an increase in the upper electrode temperature attributable to high-frequency power application, a heating medium target temperature to be achieved by a heating medium in order to adjust the upper electrode temperature to a predetermined temperature setting is calculated based upon the levels of the high-frequency power to be applied to the upper electrode and a susceptor (lower electrode) and the DC voltage to be applied to the upper electrode. During the substrate processing, the heating medium, the temperature of which is controlled based upon the target temperature, circulates through a flow passage formed at the upper electrode so as to control the temperature of the upper electrode.
摘要:
The electrode temperature control device in a processing apparatus 100 includes a freezing circuit 110 comprising a compressor 148, a condenser 142, an expansion valve 150 and an evaporator 108 with the evaporator disposed inside a lower electrode 106. This electrode temperature control device does not require components such as a coolant tank for storing the coolant, a pump for supplying the coolant to the processing apparatus, a heater for adjusting the temperature of the coolant and a heat exchanger for exchanging heat between a primary coolant and a secondary coolant. Thus, the production cost can be lowered, a reduction in installation area through miniaturization of the apparatus is achieved and more efficient use of energy is achieved as well. In addition, by using CO2 as the coolant, the GWP value can be reduced to approximately 1/8000 to 1/7000 that of Freon.
摘要:
a cooling apparatus 110 comprises a primary refrigerant circulating circuit which allows a primary refrigerant CW1 whose temperature is adjusted by a heat exchanger 138 to circulate through an electrode to adjust a temperature of the electrode, a secondary refrigerant circulating circuit which supplies a secondary refrigerant CW2 to the heat exchanger to adjust the temperature of the primary refrigerant, and a freezing circuit 140 which has a first heat exchanger 141 interposed in the secondary refrigerant circulating circuit and which adjust a temperature of the secondary refrigerant by a tertiary refrigerant. The temperature of the primary refrigerant is adjusted by the secondary refrigerant without adjusting the temperature using the freezing circuit. When a temperature of the primary refrigerant is set higher than that of the secondary refrigerant, the temperature of the primary refrigerant can be adjusted only by the secondary refrigerant. Only when the temperature of the primary refrigerant is set lower than that of the secondary refrigerant, the temperature of the secondary refrigerant is adjusted by the freezing circuit and thus, it is possible to save energy.
摘要:
The electrode temperature control device in a processing apparatus 100 includes a freezing circuit 110 comprising a compressor 148, a condenser 142, an expansion valve 150 and an evaporator 108 with the evaporator disposed inside a lower electrode 106. This electrode temperature control device does not require components such as a coolant tank for storing the coolant, a pump for supplying the coolant to the processing apparatus, a heater for adjusting the temperature of the coolant and a heat exchanger for exchanging heat between a primary coolant and a secondary coolant. Thus, the production cost can be lowered, a reduction in installation area through miniaturization of the apparatus is achieved and more efficient use of energy is achieved as well. In addition, by using CO2 as the coolant, the GWP value can be reduced to approximately {fraction (1/8000)} to {fraction (1/7000)} that of Freon.
摘要:
A refrigerant circulating passage is provided in a bottom electrode in a processing chamber of an etching system. A refrigerant CW1 is fed from a refrigerant tank to the passage via a refrigerant supply pipe. The refrigerant is cooled in a cooler via a refrigerant pipe and is returned to the refrigerant tank. Temperature sensors provided in the refrigerant supply pipe and refrigerant discharge pipe, detect a feed temperature, an inlet temperature, an outlet temperature and a return temperature, respectively. A target differential value is derived from the heat quantity of a wafer. During processing, the temperature of the refrigerant CW1 is controlled, permitting an actual differential value between the inlet and outlet temperatures follow the target differential value which in turn permits the return temperature to follow a target return temperature which is obtained by subtracting the target differential value from a set temperature of the wafer W.