Abstract:
The present disclosure provides an impedance-matching method applied to a semiconductor process apparatus, an impedance-matching device, and the semiconductor process apparatus. The impedance-matching method includes adjusting a parameter value of an adjustable element of an impedance-matching device to a preset initial value at beginning of a process, when a radio frequency (RF) power supply is powered on, adjusting the parameter value of the adjustable element according to a pre-stored optimal matching path corresponding to the process, and adjusting the parameter value of the adjustable element using an automatic matching algorithm after reaching end time of the preset matching period until impedance-matching is achieved. The optimal matching path includes parameter values of the adjustable element corresponding to different moments in a preset matching period.
Abstract:
An exemplary embodiment of the present invention provides a substrate treating apparatus, including: a chamber having an inner space; a shower head for partitioning the inner space into an upper first zone and a lower second zone, and formed with a plurality of through holes; a support unit for supporting a substrate in the second zone; a gas supply unit for supplying gas to the first zone; a plasma source for forming a plasma in the first zone by exciting the gas; and an adsorption plate coupled to the shower head, in which a surface of the adsorption plate is provided with a material that adsorbs radicals contained in the plasma.
Abstract:
An apparatus of a wafer processing apparatus includes at least one memory and logic, at least a portion of which is implemented in circuitry of the wafer processing apparatus including at least one processor coupled to the at least one memory. The logic may provide a 3D model of a surface of a wafer, the wafer defining a wafer plane; and modify a surface feature in a Z-direction along the surface of the wafer based on at least one of: an X-critical dimension (CD) extending along an X-direction of the wafer plane, and a Y-CD extending along a Y direction of the wafer plane.
Abstract:
A method for treating an outer surface of a heat transfer fluid tube especially for a receiver of a solar thermal power plant, having the steps of providing the heat transfer fluid tube and treating the outer surface with a hydrogen plasma jet so that a porosity in the range of a nano-scale is created in a thin layer of that outer surface.
Abstract:
A substrate processing apparatus comprises a processing chamber; a susceptor on which a substrate to be processed is to be placed; and a heating unit disposed below the susceptor for heating the substrate to be processed placed on the susceptor. The susceptor and the heating unit are accommodated in the processing chamber, and in a state in which the susceptor and the heating unit are relatively rotated, the substrate to be processed is processed. At least the susceptor is lifted and lowered in the processing chamber, and a substrate to be processed lifting and lowering apparatus for lifting and lowering the substrate to be processed with respect to at least a portion of the susceptor is disposed in the processing chamber.
Abstract:
A refrigerant circulating passage is provided in a bottom electrode in a processing chamber of an etching system. A refrigerant CW1 is fed from a refrigerant tank to the passage via a refrigerant supply pipe. The refrigerant is cooled in a cooler via a refrigerant pipe and is returned to the refrigerant tank. Temperature sensors provided in the refrigerant supply pipe and refrigerant discharge pipe, detect a feed temperature, an inlet temperature, an outlet temperature and a return temperature, respectively. A target differential value is derived from the heat quantity of a wafer. During processing, the temperature of the refrigerant CW1 is controlled, permitting an actual differential value between the inlet and outlet temperatures follow the target differential value which in turn permits the return temperature to follow a target return temperature which is obtained by subtracting the target differential value from a set temperature of the wafer W.
Abstract:
Provided is a method and apparatus for the production of a semiconductor device, the method and the apparatus producing a high quality and highly functional semiconductor device efficiently at low temperatures in a short time and also a high quality and highly functional semiconductor device produced by the method and apparatus. The semiconductor device is produced by forming a film of a nitride compound on a substrate having heat resistance at 600° C. or less, wherein the nitride compound includes one or more elements selected from group IIIA elements of the periodic table and a nitrogen atom and produces photoluminescence at the band edges at room temperature. The method for producing a semiconductor device comprises introducing an organic metal compound containing one or more elements selected from group IIIA elements of the periodic table intermittently in an activated environment, while continuously activating a nitrogen compound, to form a film of a nitride compound containing nitrogen and the group IIIA elements on a substrate.
Abstract:
Provided is a method and apparatus for the production of a semiconductor device, the method and the apparatus producing a high quality and highly functional semiconductor device efficiently at low temperatures in a short time and also a high quality and highly functional semiconductor device produced by the method and apparatus. The semiconductor device is produced by forming a film of a nitride compound on a substrate having heat resistance at 600° C. or less, wherein the nitride compound includes one or more elements selected from group IIIA elements of the periodic table and a nitrogen atom and produces photoluminescence at the band edges at room temperature. The method for producing a semiconductor device comprises introducing an organic metal compound containing one or more elements selected from group IIIA elements of the periodic table intermittently in an activated environment, while continuously activating a nitrogen compound, to form a film of a nitride compound containing nitrogen and the group IIIA elements on a substrate.
Abstract:
Provided is a method of etching an etch layer using a polycarbonate layer as a mask. The method includes placing an etch structure in a reaction chamber, the etch structure including an etch layer underlying a polycarbonate layer, the polycarbonate layer having apertures. The etch layer is then etched using a low pressure-high density plasma generate at a pressure in the range of approximately 1 to 30 millitorr where the ionized particle concentration is at least 10.sup.11 ions/cm.sup.3 and where the ionized particle concentration is substantially equal throughout the volume of the reaction chamber. To increase the etch rate, the etch structure can be heated or biased. To decrease the etch rate, an inert gas can be added to the process gas mixture used to form the plasma.
Abstract:
One or more embodiments described herein generally relate to methods for chucking and de-chucking a substrate to/from an electrostatic chuck used in a semiconductor processing system. Generally, in embodiments described herein, the method includes: (1) applying a first voltage from a direct current (DC) power source to an electrode disposed within a pedestal; (2) introducing process gases into a process chamber; (3) applying power from a radio frequency (RF) power source to a showerhead; (4) performing a process on the substrate; (5) stopping application of the RF power; (6) removing the process gases from the process chamber; and (7) stopping applying the DC power.