摘要:
A light emitting element includes a semiconductor laminate structure including a first semiconductor layer of a first conductivity type, a light emitting layer, and a second semiconductor layer of a second conductivity type different from the first conductivity type, a part of the second semiconductor layer and the light emitting layer being removed to expose a part of the first semiconductor layer, a first reflecting layer on the semiconductor laminate structure and including an opening, the opening being formed in the exposed part of the first semiconductor layer, a transparent wiring electrode for carrier injection into the first semiconductor layer or the second semiconductor layer through the opening, a second reflecting layer formed on the transparent wiring electrode and covering a part of the opening so as to reflect light emitted from the light emitting layer and passing through the opening back to the first semiconductor layer.
摘要:
A semiconductor light emitting element includes a semiconductor multilayer structure including a first conductive type layer, a second conductive type layer, and a light emitting layer sandwiched between the first conductive type layer and the second conductive type layer, and a reflecting layer formed on the second conductive type layer for reflecting the light emitted from the light emitting layer. The light is extracted in a direction from the light emitting layer toward the first conductive type layer. The first conductive type layer includes a concavo-convex region on a surface thereof not opposite to the light emitting layer, for changing a path of light, and at least a part of the reflecting layer is formed extending to right above an edge of the concavo-convex region.
摘要:
A first intermediate electrode 30 is a plural number of electrodes connecting to plural electrode forming parts formed in plural places, respectively on the surface of a first semiconductor layer 104. A second intermediate electrode 40 is a plural number of electrodes connecting to plural places of a transparent electrically conductive film 10, respectively. A first electrode 60 connects a plural number of the first intermediate electrodes 30 to each other, and a second electrode 70 connects a plural number of the second intermediate electrodes 40 to each other. The transparent electrically conductive film 10 is formed thin in a region A where a distance between the first intermediate electrode and the second intermediate electrode is the shortest, as compared with other regions.
摘要:
A light emitting element includes a semiconductor laminate structure including a first semiconductor layer of a first conductivity type, a light emitting layer, and a second semiconductor layer of a second conductivity type different from the first conductivity type, a part of the second semiconductor layer and the light emitting layer being removed to expose a part of the first semiconductor layer: a first reflecting layer on the semiconductor laminate structure and including an opening, the opening being formed in the exposed part of the first semiconductor layer, a transparent wiring electrode for carrier injection into the first semiconductor layer or the second semiconductor layer through the opening, a second reflecting layer formed on the transparent wiring electrode and covering a part of the opening so as to reflect light emitted from the light emitting layer and passing through the opening back to the first semiconductor layer.
摘要:
A semiconductor light emitting element includes a semiconductor multilayer structure including a first conductive type layer, a second conductive type layer, and a light emitting layer sandwiched between the first conductive type layer and the second conductive type layer, and a reflecting layer formed on the second conductive type layer for reflecting the light emitted from the light emitting layer. The light is extracted in a direction from the light emitting layer toward the first conductive type layer. The first conductive type layer includes a concavo-convex region on a surface thereof not opposite to the light emitting layer, for changing a path of light, and at least a part of the reflecting layer is formed extending to right above an edge of the concavo-convex region.
摘要:
A first intermediate electrode 30 is a plural number of electrodes connecting to plural electrode forming parts formed in plural places, respectively on the surface of a first semiconductor layer 104. A second intermediate electrode 40 is a plural number of electrodes connecting to plural places of a transparent electrically conductive film 10, respectively. A first electrode 60 connects a plural number of the first intermediate electrodes 30 to each other, and a second electrode 70 connects a plural number of the second intermediate electrodes 40 to each other. The transparent electrically conductive film 10 is formed thin in a region A where a distance between the first intermediate electrode and the second intermediate electrode is the shortest, as compared with other regions.
摘要:
A microprocessor is provided for supporting reduction of codes in size, wherein instructions are extended in units of 0.5 word from a basic one word code. A word of instruction, fetched from an external memory, is transferred to a decoding register via instruction buffers and a selector both operate in units of half words, then is decoded by a decoder. A storage unit stores a state of an instruction stored in an instruction buffer. A controlling unit controls the selector so that the instructions are transferred from instruction buffers to the decoding register in units of half words based on a direction from the decoder and the states stored in the storage unit.
摘要:
A semiconductor light emitting element includes a semiconductor multilayer structure including a first conductive type layer, a second conductive type layer and a light emitting layer sandwiched between the first conductive type layer and the second conductive type layer, a first transparent electrode formed on the second conductive type layer, a reflecting layer formed on the first transparent electrode, and including a smaller area than the first transparent electrode, a second transparent electrode formed on the first transparent electrode so as to cover the reflecting layer, and a pad electrode formed on the second transparent electrode and in a region above the reflecting layer.
摘要:
Sample A is produced by sequentially forming a first insulating film of SiO2 and a reflective film on a sapphire substrate. Sample B is produced by sequentially forming a first insulating film of SiO2, a reflective film, and a second insulating film of SiO2 on a sapphire substrate. In both samples A and B, the reflectance of the reflective film was measured at a wavelength of 450 nm before and after heat treatment. Heat treatment was performed at 600° C. for three minutes. As shown in FIG. 1, in Al/Ag/Al where Al has a thickness of 1 Å to 30 Å, Ag/Al where Al has a thickness of 20 Å, and Al/Ag/Al/Ag/Al where Al has a thickness of 20 Å, the reflectance was 95% or more, which is equivalent to or higher than that of Ag even after the heat treatment.
摘要翻译:通过在蓝宝石衬底上依次形成SiO 2的第一绝缘膜和反射膜来制造样品A. 样品B通过在蓝宝石衬底上依次形成SiO 2的第一绝缘膜,反射膜和SiO 2的第二绝缘膜来制造。 在样品A和B中,在热处理前后在450nm的波长下测量反射膜的反射率。 在600℃下进行热处理3分钟。 如图所示。 如图1所示,在Al / Ag / Al中,其中Al具有厚度为的厚度为的Al / Ag / Al,Al的厚度为Al,Al / Ag / Al / Ag / Al,其中Al的厚度为 反射率为95%以上,即使在热处理后也等于或高于Ag。
摘要:
Sample A is produced by sequentially forming a first insulating film of SiO2 and a reflective film on a sapphire substrate. Sample B is produced by sequentially forming a first insulating film of SiO2, a reflective film, and a second insulating film of SiO2 on a sapphire substrate. In both samples A and B, the reflectance of the reflective film was measured at a wavelength of 450 nm before and after heat treatment. Heat treatment was performed at 600° C. for three minutes. As shown in FIG. 1, in Al/Ag/Al where Al has a thickness of 1 Å to 30 Å, Ag/Al where Al has a thickness of 20 Å, and Al/Ag/Al/Ag/Al where Al has a thickness of 20 Å, the reflectance was 95% or more, which is equivalent to or higher than that of Ag even after the heat treatment.
摘要翻译:通过在蓝宝石衬底上依次形成SiO 2的第一绝缘膜和反射膜来制造样品A. 样品B通过在蓝宝石衬底上依次形成SiO 2的第一绝缘膜,反射膜和SiO 2的第二绝缘膜来制造。 在样品A和B中,在热处理前后在450nm的波长下测量反射膜的反射率。 在600℃下进行热处理3分钟。 如图所示。 如图1所示,在Al / Ag / Al中,其中Al具有厚度为的厚度为的Al / Ag / Al,Al的厚度为Al,Al / Ag / Al / Ag / Al,其中Al的厚度为 反射率为95%以上,即使在热处理后也等于或高于Ag。