摘要:
Synthesis gas for FT synthesis is produced using a producing apparatus including an active carbon adsorbing vessel for adsorbing impurities in a natural gas, a hydro-desulfurizer for hydrogenating and desulfurizing sulfur content in the natural gas under a condition of a partial pressure of hydrogen of 100 to 200 kPa, a second hydrogen supplying line for supplying hydrogen to the natural gas between the hydro-desulfurizer and a reactor, the reactor for obtaining synthesis gas by reacting the natural gas, carbon dioxide and steam in the presence of a catalyst for reforming, and a heat recovering boiler for cooling the synthesis gas at a cooling rate of 2000 to 4000° C./second.
摘要:
Synthesis gas for FT synthesis is produced using a producing apparatus including an active carbon adsorbing vessel for adsorbing impurities in a natural gas, a hydro-desulfurizer for hydrogenating and desulfurizing sulfur content in the natural gas under a condition of a partial pressure of hydrogen of 100 to 200 kPa, a second hydrogen supplying line for supplying hydrogen to the natural gas between the hydro-desulfurizer and a reactor, the reactor for obtaining synthesis gas by reacting the natural gas, carbon dioxide and steam in the presence of a catalyst for reforming, and a heat recovering boiler for cooling the synthesis gas at a cooling rate of 2000 to 4000° C./second.
摘要:
According to an exemplary embodiment, a bubble column-type slurry bed Fischer-Tropsch synthesis reaction process can be provided, in which synthesis gas supplied continuously from the bottom of a reactor contacts suspended catalyst particles to form liquid hydrocarbons, gaseous hydrocarbons and water. Additionally, a slurry of suspended liquid products and catalyst particles can move from the reactor to the lower portion of a separation vessel to separate the catalyst particles and gaseous products. Further, a process can be provided in which the liquid products formed are sent to the separation vessel a process in which liquid products can be derived. Additionally, a process can be provided in which a slurry in which catalyst particles are concentrated is derived from the bottom of the separation vessel and circulated to the bottom of the reactor, are driven by the driving force of synthesis gas without using an external drive power source.
摘要:
A bubble column-type slurry bed reaction system is provided in which an operating system, which synthesizes liquid hydrocarbons by the Fischer-Tropsch (FT) synthesis reaction and separates and derives a catalyst and liquid hydrocarbon products from a slurry composed of gas, liquid and solid phases, can be simplified, and deterioration of catalyst particles caused by attrition and so forth can be reduced. In this FT synthesis reaction system, a bubble column-type slurry bed Fischer-Tropsch synthesis reaction process, in which synthesis gas supplied continuously from the bottom of a reactor and suspended catalyst particles are contacted to form liquid hydrocarbons, gaseous hydrocarbons and water, a process in which a slurry of suspended liquid products formed in the Fischer-Tropsch synthesis reaction process and catalyst particles moves from the reactor to the lower portion of a separation vessel through a downwardly inclined transfer pipe to separate the catalyst particles and gaseous products, a process in which the liquid products formed in the Fischer-Tropsch synthesis reaction process is sent to the separation vessel through a horizontal connecting pipe installed above the downwardly inclined transfer pipe and derived from its apex, a process in which liquid products are derived from the separation vessel, and a process in which aslurry in which catalyst particles are concentrated is derived from the bottom of the separation vessel and circulated to the bottom of the reactor, are driven by the driving force of synthesis gas introduced from the bottom of the reactor and which rises through the slurry bed reactor without using an external drive power source for circulation, and the formed liquid hydrocarbon products, gaseous hydrocarbon products and water are separated and derived without using an external drive power source for separation.
摘要:
The hydrocarbon synthesis reaction apparatus is provided with a synthesis gas supply line in which a synthesis gas is compressed and supplied by a first compressor, a reactor configured to accommodate a catalyst slurry, a gas-liquid separator configured to separate an unreacted synthesis gas and hydrocarbons discharged from the reactor into a gas and a liquid, a first recycle line in which the unreacted synthesis gas after separation into a gas and a liquid is compressed and recycled into the reactor by a second compressor, and a second recycle line configured to recycle a residual unreacted synthesis gas after separation into a gas and a liquid into the inlet side of the first compressor at the time of start-up operation when the synthesis gas is gradually increased in the amount to be introduced.
摘要:
The hydrocarbon synthesis reaction apparatus is provided with a synthesis gas supply line in which a synthesis gas is compressed and supplied by a first compressor, a reactor configured to accommodate a catalyst slurry, a gas-liquid separator configured to separate an unreacted synthesis gas and hydrocarbons discharged from the reactor into a gas and a liquid, a first recycle line in which the unreacted synthesis gas after separation into a gas and a liquid is compressed and recycled into the reactor by a second compressor, and a second recycle line configured to recycle a residual unreacted synthesis gas after separation into a gas and a liquid into the inlet side of the first compressor at the time of start-up operation when the synthesis gas is gradually increased in the amount to be introduced.
摘要:
A hydrocarbon synthesis reaction apparatus includes a reactor, and a synthesis gas supply line through which a synthesis gas is supplied to the reactor, and syntheses hydrocarbons by contacting the synthesis gas and the catalyst slurry in the reactor. The hydrocarbon synthesis reaction apparatus includes a spare supply line which is connected to the synthesis gas supply line, and supplies inert gas or hydrogen gas to the reactor through the synthesis gas supply line when supply of the synthesis gas to the synthesis gas supply line from the synthesis gas supply device is stopped, and a fluid heating device which heats at least one of a fluid which flows through a flowing line of the synthesis gas supply line located closer to the reactor than a portion connected with the spare supply line, and a fluid which flows through the spare supply line.
摘要:
A catalyst separation system is provided with: a reactor where hydrocarbons are synthesized by a chemical reaction of a synthesis gas including carbon monoxide gas and hydrogen gas as main components, and a catalyst slurry having solid catalyst particles suspended in a liquid; filters which separate the hydrocarbons and the catalyst slurry; and a gas-liquid separator which separates the liquid hydrocarbons flowing out of the filter into gas hydrocarbons and liquid hydrocarbons.
摘要:
A liquid-fuel synthesizing method includes a synthesizing step of synthesizing liquid fuels by making a synthesis gas including a carbon monoxide gas and a hydrogen gas as the main components and a slurry having solid catalyst particles suspended in a liquid react with each other in a reactor, and a synthesis gas supply step of supplying the synthesis gas to the reactor from a plurality of supply devices provided in the reactor so as to have different heights.
摘要:
Provided is a solder material test method that reduces labor and time and is preferred in operation hygiene. Detected are a first intensity at a particular wave number of infrared radiation reflected from a test-sample solder material by illuminating light to the test-sample solder material and a second intensity at the particular wave number of infrared radiation reflected from a comparative-sample solder material by illuminating light to the comparative-sample solder material. Depending upon the first and second intensities detected, intensity differences and ratios are determined. Those may be absorbance differences or intensities of between an infrared radiation absorbance to test-sample solder material and an infrared radiation absorbance to comparative-sample solder material. From the intensity difference, intensity ratio, absorbance difference and absorbance ratio, the test-sample solder material is tested for deterioration degree relatively to the comparative sample.