摘要:
Provided is a monocrystalline silicon carbide ingot containing a dopant element, wherein a maximum concentration of the dopant element is less than 5×1017 atoms/cm3 and the maximum concentration is 50 times or less than that of a minimum concentration of the dopant element. Also provided is a monocrystalline silicon carbide wafer made by cutting and polishing the monocrystalline silicon carbide ingot, wherein a electric resistivity at room temperature of the wafer is 5×103 Ωcm or more. Further provided is a method for manufacturing the monocrystalline silicon carbide including growing the monocrystalline silicon carbide on a seed crystal from a sublimation material by a sublimation method. The sublimation material includes a solid material containing a dopant element, and the specific surface of the solid material containing the dopant element is 0.5 m2/g or less.
摘要:
Provided is a monocrystalline silicon carbide ingot containing a dopant element, wherein a maximum concentration of the dopant element is less than 5×1017 atoms/cm3 and the maximum concentration is 50 times or less than that of a minimum concentration of the dopant element. Also provided is a monocrystalline silicon carbide wafer made by cutting and polishing the monocrystalline silicon carbide ingot, wherein a electric resistivity at room temperature of the wafer is 5×103 Ωcm or more. Further provided is a method for manufacturing the monocrystalline silicon carbide including growing the monocrystalline silicon carbide on a seed crystal from a sublimation material by a sublimation method. The sublimation material includes a solid material containing a dopant element, and the specific surface of the solid material containing the dopant element is 0.5 m2/g or less.
摘要:
Provided is a monocrystalline silicon carbide ingot containing a dopant element, wherein a maximum concentration of the dopant element is less than 5×1017 atoms/cm3 and the maximum concentration is 50 times or less than that of a minimum concentration of the dopant element. Also provided is a monocrystalline silicon carbide wafer made by cutting and polishing the monocrystalline silicon carbide ingot, wherein a electric resistivity at room temperature of the wafer is 5×103 Ωcm or more. Further provided is a method for manufacturing the monocrystalline silicon carbide including growing the monocrystalline silicon carbide on a seed crystal from a sublimation material by a sublimation method. The sublimation material includes a solid material containing a dopant element, and the specific surface of the solid material containing the dopant element is 0.5 m2/g or less.
摘要:
The present invention provides a high resistivity, high quality, large size SiC single crystal, SiC single crystal wafer, and method of production of the same, that is, a silicon carbide single crystal containing uncompensated impurities in an atomic number density of 1×1015/cm3 or more and containing vanadium in an amount less than said uncompensated impurity concentration, silicon carbide single crystal wafer obtained by processing and polishing the silicon carbide single crystal and having an electrical resistivity at room temperature of 5×103 Ωcm or more, and a method of production of a silicon carbide single crystal.
摘要:
Provided is a monocrystalline silicon carbide ingot containing a dopant element, wherein a maximum concentration of the dopant element is less than 5×1017 atoms/cm3 and the maximum concentration is 50 times or less than that of a minimum concentration of the dopant element. Also provided is a monocrystalline silicon carbide wafer made by cutting and polishing the monocrystalline silicon carbide ingot, wherein a electric resistivity at room temperature of the wafer is 5×103 Ωcm or more. Further provided is a method for manufacturing the monocrystalline silicon carbide including growing the monocrystalline silicon carbide on a seed crystal from a sublimation material by a sublimation method. The sublimation material includes a solid material containing a dopant element, and the specific surface of the solid material containing the dopant element is 0.5 m2/g or less.
摘要:
The present invention provides a semi-insulating silicon carbide single crystal characterized by having an electrical resistivity at room temperature of 1×105 Ωcm or more, and a semi-insulating silicon carbide single crystal characterized by having an electrical resistivity at room temperature of 1×105 Ωcm or more and vacancy pairs (bivacancies), and an semi-insulating silicon carbide single crystal characterized by having an electrical resistivity at room temperature of 1×105 Ωcm or more and containing a crystal region where a position average lifetime becomes a lifetime longer than 155 ps in measurement of position lifetime at a liquid nitrogen boiling point temperature (77K) or less, and wafer obtained therefrom.According to the present invention, by having vacancy clusters including vacancy pairs, the electrical conductivity can be reduced even when the nitrogen concentration is higher than the boron concentration and, in addition, a semi-insulating SiC single crystal resistant to change of the electrical conductivity even with heat treatment can be obtained.
摘要:
The present invention provides a high resistivity, high quality, large size SiC single crystal, SiC single crystal wafer, and method of production of the same, that is, a silicon carbide single crystal containing uncompensated impurities in an atomic number density of 1×1015/cm3 or more and containing vanadium in an amount less than said uncompensated impurity concentration, silicon carbide single crystal wafer obtained by processing and polishing the silicon carbide single crystal and having an electrical resistivity at room temperature of 5×103 Ωcm or more, and a method of production of a silicon carbide single crystal.
摘要翻译:本发明提供一种高电阻率,高质量,大尺寸的SiC单晶,SiC单晶晶片及其制造方法,即含有原子序数密度为1×10 15 / cm 3的未补偿杂质的碳化硅单晶 以上,并且含有少于所述未补偿杂质浓度的钒,通过在室温下加工和研磨碳化硅单晶而获得的电阻率为5×10 3Ωcm以上的碳化硅单晶晶片,以及制造方法 碳化硅单晶。
摘要:
The present invention provides a semi-insulating silicon carbide single crystal characterized by having an electrical resistivity at room temperature of 1×105 Ωcm or more, and a semi-insulating silicon carbide single crystal characterized by having an electrical resistivity at room temperature of 1×105 Ωcm or more and vacancy pairs (bivacancies), and an semi-insulating silicon carbide single crystal characterized by having an electrical resistivity at room temperature of 1×105 Ωcm or more and containing a crystal region where a position average lifetime becomes a lifetime longer than 155 ps in measurement of position lifetime at a liquid nitrogen boiling point temperature (77K) or less, and wafer obtained therefrom. According to the present invention, by having vacancy clusters including vacancy pairs, the electrical conductivity can be reduced even when the nitrogen concentration is higher than the boron concentration and, in addition, a semi-insulating SiC single crystal resistant to change of the electrical conductivity even with heat treatment can be obtained.
摘要:
Provided is a monocrystalline silicon carbide ingot containing a dopant element, wherein a maximum concentration of the dopant element is less than 5×1017 atoms/cm3 and the maximum concentration is 50 times or less than that of a minimum concentration of the dopant element. Also provided is a monocrystalline silicon carbide wafer made by cutting and polishing the monocrystalline silicon carbide ingot, wherein a electric resistivity at room temperature of the wafer is 5×103 Ωcm or more. Further provided is a method for manufacturing the monocrystalline silicon carbide including growing the monocrystalline silicon carbide on a seed crystal from a sublimation material by a sublimation method. The sublimation material includes a solid material containing a dopant element, and the specific surface of the solid material containing the dopant element is 0.5 m2/g or less.
摘要:
The present invention provides a high resistivity, high quality, large size SiC single crystal, SiC single crystal wafer, and method of production of the same, that is, a silicon carbide single crystal containing uncompensated impurities in an atomic number density of 1 ×1015/cm3 or more and containing vanadium in an amount less than said uncompensated impurity concentration, silicon carbide single crystal wafer obtained by processing and polishing the silicon carbide single crystal and having an electrical resistivity at room temperature of 5×103 Ωcm or more, and a method of production of a silicon carbide single crystal.