Abstract:
An objective lens of large relative aperture includes three lens components of positive power arranged to be focused by moving the first and third components in unison forwardly, along with forward movement of the second component by a smaller amount than the movement of the first and third components when focusing down to shorter object distances. Accordingly, aberrations are well corrected throughout an extended range of image magnification.
Abstract:
An objective lens of large relative aperture comprising, from front to rear, a first lens component of positive power, a second lens component of positive power and a third lens component of negative power, the first and third lens components being moved forward as a unit, while the second lens component is simultaneously moved forward by a smaller amount than that of the movement of them to effect focusing from infinity to shorter object distances. The focal lengths of the first, second and third lens components, the calculations of the constituent lenses, and the glass materials of which the lenses are made up are properly chosen so as to achieve a high grade imaging performance throughout a focusing range from infinity to very short object distances.
Abstract:
A large relative aperture objective lens having three lens groups of positive power with said three lens groups being all moved forward to effect focusing from an infinitely distant object to close objects. The three lens groups, being named from front to rear, 1st, 2nd and 3rd lens groups successively, have the amounts of forward movement of the 1st, 2nd and 3rd lens groups made progressively smaller. Accordingly, good stability of aberration correction throughout the extended focusing range is achieved.
Abstract:
Provided is a method of producing an optical element forming mold, the method including forming a ta-C film 12 on a mold matrix 10 for an optical element forming mold by an FCVA process, in which the mold matrix 10 is kept at a floating potential, a voltage is applied to a mold matrix-holding member 2 for holding the mold matrix via insulating members (3a,3b), and a magnet 4 internally provided in the mold matrix forms a magnetic field for applying a magnetic force in a normal direction of a transfer surface of the mold matrix so as to follow a magnetic force applied by a filter coil 22, thereby homogenizing the film quality.
Abstract:
A non-contact storage medium fixing structure includes a non-contact storage medium that has a memory unit which stores predetermined information of an object to be controlled, a pair of wire connection guide members respectively provided at at least two positions on a body of the non-contact storage medium, and a wire connection member that fixes the non-contact storage medium at a predetermined position of the object to be controlled, by way of the pair of wire connection guide members.
Abstract:
An RFID tag includes an inlay which has a base, an antenna formed on the base, and an IC chip. The IC chip is enclosed in a surface mount package and soldered to the antenna and carries out radio communication through the antenna. The RFID tag further includes underfill that fills a gap between the base and the surface mount package, and a sheath protecting material enclosing the entire inlay.
Abstract:
A wireless tag includes a tag-inlet including an antenna pattern formed on a base and an IC chip connected to the antenna pattern on the base, and a flexible member configured to seal the tag-inlet inside the flexible member. In the wireless tag, the tag-inlet is sealed in the flexible member with folded, and the folded tag-inlet has a dielectric spacer formed of the flexible member between the folded tag-inlet.
Abstract:
A radio-frequency identification (RFID) tag includes: a plate-shaped sealing piece made of an elastic material. An inlet is enclosed within the sealing piece. The inlet includes an electronic component and an antenna connected to the electronic component. A pair of reinforcing pieces are located respectively on the front and back surfaces of the sealing piece so as to sandwich the electronic component. The reinforcing pieces are made of a first material harder than the elastic material. A joint piece configured to couple the reinforcing pieces to each other. The joint piece is made of a second material harder than the elastic material.
Abstract:
The RFID tag includes a base that can bend and unbend; a communication antenna wired on the base; a circuit chip that is electrically connected to the antenna and performs radio communication via the antenna; a reinforcing member as a chip reinforcing member that covers at least the periphery of the circuit chip and a section of the antenna wiring, the covering preformed at least in an upper side with respect to the base designated as a bottom, and that has a concavo-convex shape and intersects with the antenna wiring at a concave section of the concavo-convex shape; and an adhesive that adheres the reinforcing member to the base, and in which an edge along a concave section of the edge of the reinforcing member traverses over the antenna.
Abstract:
A non-contact IC tag system includes a plurality of non-contact IC tags, each of which includes identification information and a memory for storing a predetermined amount of data; and a reader/writer that sends an operation command via radio to each of the non-contact IC tags. The non-contact IC tags include a plurality of slave IC tags and a master IC tag. The master IC tag holds memory configuration information that is used when building a memory space with a memory area of the memory of each of the slave IC tags and a memory area of the memory of the master IC tag.