摘要:
There is provided an optical displacement detection mechanism in which, even if a measurement object changes, a detection sensitivity and a ratio of a noise are adjustable without depending on optical characteristics such as reflectivity, or a shape and mechanical characteristics of a measurement object, an influence of a thermal deformation of the measurement object by an irradiated light to the measurement object can be made small, and a measurement accuracy can be ensured under optimum conditions. In an optical displacement detection mechanism comprising a light source irradiating a light to a cantilever becoming the measurement object, a light source drive circuit driving the light source, a photodetector receiving the light after irradiated to the cantilever from the light source to thereby detect an intensity of the light, and an amplifier amplifying a detection signal of the photodetector at a predetermined amplification rate, there is made such that, by providing a light intensity regulator and an amplification rate regulator, an irradiated light intensity to the cantilever and an amplification rate of the photodetector can be made variable.
摘要:
There is provided an optical displacement detection mechanism in which, even if a measurement object changes, a detection sensitivity and a ratio of a noise are adjustable without depending on optical characteristics such as reflectivity, or a shape and mechanical characteristics of a measurement object, an influence of a thermal deformation of the measurement object by an irradiated light to the measurement object can be made small, and a measurement accuracy can be ensured under optimum conditions. In an optical displacement detection mechanism comprising a light source irradiating a light to a cantilever becoming the measurement object, a light source drive circuit driving the light source, a photodetector receiving the light after irradiated to the cantilever from the light source to thereby detect an intensity of the light, and an amplifier amplifying a detection signal of the photodetector at a predetermined amplification rate, there is made such that, by providing a light intensity regulator and an amplification rate regulator, an irradiated light intensity to the cantilever and an amplification rate of the photodetector can be made variable.
摘要:
The optical displacement-detecting mechanism has: a light source for irradiating a target for measurement with light; a light source-driving circuit for driving the light source; an optical detector made from a semiconductor for receiving light after the irradiation of the target for measurement by the light source and converting the light into an electric signal thereby to detect an intensity of light; and an amplifier including a current-voltage conversion circuit for performing current-to-voltage conversion on a detection signal of the optical detector with a predetermined amplification factor. In the optical displacement-detecting mechanism, a light source having a spectrum half width of 10 nm or larger is used, whereby the light source can be driven with an output power of 2 mW or larger without generating mode hop noise and optical feedback noise.
摘要:
The optical displacement-detecting mechanism has: a light source for irradiating a target for measurement with light; a light source-driving circuit for driving the light source; an optical detector made from a semiconductor for receiving light after the irradiation of the target for measurement by the light source and converting the light into an electric signal thereby to detect an intensity of light; and an amplifier including a current-voltage conversion circuit for performing current-to-voltage conversion on a detection signal of the optical detector with a predetermined amplification factor. In the optical displacement-detecting mechanism, a light source having a spectrum half width of 10 nm or larger is used, whereby the light source can be driven with an output power of 2 mW or larger without generating mode hop noise and optical feedback noise.
摘要:
A displacement detection mechanism for a scanning probe microscope capable of performing measurement quickly with high precision even if an objective lens or an illumination system is arranged above or below a sample or a cantilever, and a scanning probe microscope comprising it. The displacement detection mechanism (112) for a scanning probe microscope comprising a supporting section (22) for supporting a cantilever (20), a light source (114) for irradiating a reflective surface (14) with light, and a light receiving section (121) for receiving light reflected off the reflective surface (14), and detecting displacement of the cantilever (20) based on the light receiving position of the light receiving section (121), wherein the rear end of the cantilever (20) is secured to the supporting section (22), and the above light is allowed to impinge on the reflective surface (14), while inclining toward the X axis and Y axis, from above regions B and C on the distal end side of the cantilever (20) out of regions A, B, C and D sectioned, when viewed from the above, by the Y axis extending in the longitudinal direction of the cantilever (20) and the X axis passing through the reflective surface (14) and extending in the direction intersecting the Y axis perpendicularly.
摘要:
A displacement detection mechanism for a scanning probe microscope capable of performing measurement quickly with high precision even if an objective lens or an illumination system is arranged above or below a sample or a cantilever, and a scanning probe microscope comprising it. The displacement detection mechanism (112) for a scanning probe microscope comprising a supporting section (22) for supporting a cantilever (20), a light source (114) for irradiating a reflective surface (14) with light, and a light receiving section (121) for receiving light reflected off the reflective surface (14), and detecting displacement of the cantilever (20) based on the light receiving position of the light receiving section (121), wherein the rear end of the cantilever (20) is secured to the supporting section (22), and the above light is allowed to impinge on the reflective surface (14), while inclining toward the X axis and Y axis, from above regions B and C on the distal end side of the cantilever (20) out of regions A, B, C and D sectioned, when viewed from the above, by the Y axis extending in the longitudinal direction of the cantilever (20) and the X axis passing through the reflective surface (14) and extending in the direction intersecting the Y axis perpendicularly.
摘要:
A Cu—Ga alloy sintered-compact sputtering target having a Ga concentration of 40 to 50 at % and Cu as the balance, wherein the sintered-compact sputtering target is characterized in that the relative density is 80% or higher, and the compositional deviation of the Ga concentration is within ±0.5 at % of the intended composition. A method of producing a Cu—Ga alloy sintered-compact sputtering target having a Ga concentration of 40 to 50 at % and Cu as the balance, wherein the method thereof is characterized in that Cu and Ga raw materials are melted and cooled/pulverized to produce a Cu—Ga alloy raw material powder, and the obtained material powder is further hot-pressed with a retention temperature being between the melting point of the mixed raw material powder and a temperature 15° C. lower than the melting point and with a pressure of 400 kgf/cm2 or more applied to the sintered mixed raw material powder. Provided are a sputtering target having very low compositional deviation and high density; a method of producing the target; a light-absorbing layer having a Cu—Ga based alloy film; and a CIGS solar cell including the light-absorbing layer.
摘要:
A first bit-sequence, which is to be transmitted from a control section to an authentication chip according to an encoding scheme that transmits each one and zero by a pulse with a width of 200 μsec and 100 μsec respectively, is converted to a second bit-sequence to be transmitted according to NRZ encoding. The converted second bit-sequence is stored in a register with the MSB of the second bit-sequence aligned in the MSB of the register. Timing to set the pulse width for transmission of a one or zero by NRZ encoding is performed repeatedly, and at the start of each timed interval, the signal transmission level output to the authentication chip is set corresponding to the value of the bit stored in the MSB of the register. After setting the signal transmission level, the register is shifted left one bit.
摘要:
A tip unit (1) incorporated in a liquid applicator such as a ball-point pen, the tip unit being capable of an increased rate of liquid discharge with no leaking or clogging problem. To achieve it, the tip unit (1) is accommodated in a tip body (11) having a ball housing (15), a ball (10), a capillary hole (16), and a proximal bore, the ball housing (15) being a passage for allowing liquid to flow therethrough, the ball (10) being rotatively held in the ball housing (15). The ball housing (15) is provided with at least one ink channel (47) adapted to communicate the ball housing (15) with the capillary hole (16) or the proximal bore. The ball housing (15) has a ball resting seat (45) and a side wall (41) that are connected by a connecting surface (71) having a shape of a truncated conical surface with its apex toward the distal end of the tip unit (1).
摘要:
Provided is an aligning method capable of setting a sample observation unit such as an optical microscope to a probe microscope observation position at high precision. A sample having a known structure is used in advance. A surface of the sample and a shape of a cantilever provided with a probe are observed using the sample observation unit such as the optical microscope. A sample observation position and a probe position which are obtained using the sample observation unit are verified, and a relative positional relationship therebetween is recorded. Then, a first mark indicating a position of the cantilever and a second mark which is displayed in conjunction with the first mark and has the relative positional relationship with the first mark are produced to align the sample relative to the second mark.