摘要:
A Cu—Ga alloy sintered-compact sputtering target having a Ga concentration of 40 to 50 at % and Cu as the balance, wherein the sintered-compact sputtering target is characterized in that the relative density is 80% or higher, and the compositional deviation of the Ga concentration is within ±0.5 at % of the intended composition. A method of producing a Cu—Ga alloy sintered-compact sputtering target having a Ga concentration of 40 to 50 at % and Cu as the balance, wherein the method thereof is characterized in that Cu and Ga raw materials are melted and cooled/pulverized to produce a Cu—Ga alloy raw material powder, and the obtained material powder is further hot-pressed with a retention temperature being between the melting point of the mixed raw material powder and a temperature 15° C. lower than the melting point and with a pressure of 400 kgf/cm2 or more applied to the sintered mixed raw material powder. Provided are a sputtering target having very low compositional deviation and high density; a method of producing the target; a light-absorbing layer having a Cu—Ga based alloy film; and a CIGS solar cell including the light-absorbing layer.
摘要:
A Cu—Ga alloy sintered-compact sputtering target having a Ga concentration of 40 to 50 at % and Cu as the balance, wherein the sintered-compact sputtering target is characterized in that the relative density is 80% or higher, and the compositional deviation of the Ga concentration is within ±0.5 at % of the intended composition. A method of producing a Cu—Ga alloy sintered-compact sputtering target having a Ga concentration of 40 to 50 at % and Cu as the balance, wherein the method thereof is characterized in that Cu and Ga raw materials are melted and cooled/pulverized to produce a Cu—Ga alloy raw material powder, and the obtained material powder is further hot-pressed with a retention temperature being between the melting point of the mixed raw material powder and a temperature 15° C. lower than the melting point and with a pressure of 400 kgf/cm2 or more applied to the sintered mixed raw material powder. Provided are a sputtering target having very low compositional deviation and high density; a method of producing the target; a light-absorbing layer having a Cu—Ga based alloy film; and a CIGS solar cell including the light-absorbing layer.
摘要:
The purpose of the invention is to provide a sputtering target formed from a Cu—Ga alloy having a Ga composition of 29 at % or more.[Problem] Since a Cu—Ga alloy becomes a brittle γ phase-single phase structure when the Ga composition becomes 29 at % or more, it cannot be subject to processes such as rolling and forging. Accordingly, the crystal grain size of the cast structure must be small and uniform so that the cast structure can be used as is.[Solution] It is possible to produce a melted and cast Cu—Ga alloy sputtering target containing 29 to 42.6 at % of Ga, and remainder being Cu and unavoidable impurities by continuously solidifying the Cu—Ga alloy sputtering target under solidifying conditions of a constant cooling rate or higher, wherein an average crystal grain size of a sputter front face is 3 mm or less, and a cross section structure of the target is a columnar structure that has grown in a direction from the sputter front face toward a center plane which is parallel to a sputter face.
摘要:
A quaternary alloy sputtering target composed of copper (Cu), indium (In), gallium (Ga) and selenium (Se), wherein a composition ratio of the respective elements is represented by a formula of CuxIn1-yGaySea (in the formula, 0.84≦x≦0.98, 0
摘要翻译:由铜(Cu),铟(In),镓(Ga)和硒(Se)组成的四元合金溅射靶,其中各元素的组成比由CuxIn1-yGaySea的式表示(在式中,0.84 @ x @ 0.98,0
摘要:
A quaternary alloy sputtering target composed of copper (Cu), indium (In), gallium (Ga) and selenium (Se), wherein a composition ratio of the respective elements is represented by a formula of CuxIn1-yGaySea (in the formula, 0.84≦x≦0.98, 0
摘要:
A quaternary alloy sputtering target made of copper (Cu), indium (In), gallium (Ga) and selenium (Se), wherein the Cu—In—Ga—Se sputtering target has a composition that is represented by a composition formula of CuIn1−xGaxSe2−y (provided that x and y respectively represent atomic ratios), a composition range of 0
摘要:
The present invention relates to a setup method for deciding component feeding apparatuses to be attached to each of mounting machines in a component mounting system. The setup method includes a first step of deciding component feeding apparatuses to be attached to each of the mounting machines based on substrate data defining components to be mounted by each of the mounting machines; a second step of determining whether or not there is within the components included in the substrate data a sole mounted component to be mounted by only one mounting machine among the multiple mounting machines; and a third step of deciding, when the determination is made that the sole mounted component exists, to attach component feeding apparatuses feeding the sole mounted component or an alternative component capable of replacing the sole mounted component onto at least one mounting machine other than the only one mounting machine.
摘要:
The present invention provides an indium target and manufacturing method thereof, where deposition rate is high, initial discharge voltage is low, and deposition rate and discharge voltage, from the start of sputtering to the end of sputtering, are stable. In the indium target, an aspect ratio (length of longer direction/length of shorter direction) of crystal particle, observed from cross-section direction of the target, is 2.0 or less.
摘要:
A zoom lens includes, in order from an object side to an image side, a first lens unit having a positive refractive power, which does not move for zooming, a second lens unit having a negative refractive power, which moves during zooming, a third lens unit having a negative refractive power, which moves during zooming, an aperture stop, and a fourth lens unit having a positive refractive power, which does not move for zooming. The fourth lens unit includes a first lens sub-unit, a focal length conversion optical system configured to be inserted into or removed from an optical path, and a second lens sub-unit. A focal length of the second lens sub-unit, a distance from the aperture stop to a lens surface at the most object side of the second lens sub-unit, and an F-number of the entire zoom lens at a wide-angle end are appropriately set.
摘要:
Disclosed are new methods comprising the use of in situ hybridization to detect abnormal nucleic acid sequence copy numbers in one or more genomes wherein repetitive sequences that bind to multiple loci in a reference chromosome spread are either substantially removed and/or their hybridization signals suppressed. The invention termed Comparative Genomic Hybridization (CGH) provides for methods of determining the relative number of copies of nucleic acid sequences in one or more subject genomes or portions thereof (for example, a tumor cell) as a function of the location of those sequences in a reference genome (for example, a normal human genome). The intensity(ies) of the signals from each labeled subject nucleic acid and/or the differences in the ratios between different signals from the labeled subject nucleic acid sequences are compared to determine the relative copy numbers of the nucleic acid sequences in the one or more subject genomes as a function of position along the reference chromosome spread. Amplifications, duplications and/or deletions in the subject genome(s) can be detected. Also provided is a method of determining the absolute copy numbers of substantially all RNA or DNA sequences in subject cell(s) or cell population(s).