摘要:
A light-emitting device includes a light-emitting element emitting primary light and a wavelength conversion portion absorbing a part of the primary light and emitting secondary light having a wavelength equal to or longer than the wavelength of the primary light. The wavelength conversion portion includes a plurality of green or yellow light-emitting phosphors and a plurality of red light-emitting phosphors. The green or yellow light-emitting phosphor is implemented by at least one selected from a specific europium (II)-activated silicate phosphor (A-1) and a specific cerium (III)-activated silicate phosphor (A-2). The red light-emitting phosphor is implemented by a specific europium (II)-activated nitride phosphor (B). The light-emitting device emitting white light at efficiency and color rendering property higher than in a conventional example can thus be provided.
摘要:
An LED device at least including a blue light emitting element having peak emission wavelength of 420 nm to 480 nm, a green fluorescent substance having peak wavelength of fluorescent spectrum in the range of 500 nm to 580 nm with the emission of the blue light emitting element, and a red light emitting element having peak emission wavelength of 600 nm to 670 nm is provided. The device may further include an ultraviolet/violet light emitting element for exciting green fluorescent substance. As a result, an LED device capable of attaining bright white light with good color reproduction characteristic is provided.
摘要:
An LED lamp has a convex lens 3 which has an upper portion 5 and a lower portion 6. An upper curved surface 5A of the upper portion is different in shape from a lower curved surface 6A of the lower portion 6 so as to refract rays of light from an LED chip 2 more strongly than the lower curved surface 6A does. This avoids reflection of incident outside light toward a front and hence prevents misrecognition. An interface plane S1 between the upper and lower portions 5 and 6 of the convex lens 3 is located on an upper end face 2A to thereby prevent collection of outgoing light upon the interface plane S1 and generation of an irregular emission peak at the front.
摘要:
An LED lamp has a convex lens 3 which has an upper portion 5 and a lower portion 6. An upper curved surface 5A of the upper portion is different in shape from a lower curved surface 6A of the lower portion 6 so as to refract rays of light from an LED chip 2 more strongly than the lower curved surface 6A does. This avoids reflection of incident outside light toward a front and hence prevents misrecognition. An interface plane S1 between the upper and lower portions 5 and 6 of the convex lens 3 is located on an upper end face 2A to thereby prevent collection of outgoing light upon the interface plane S1 and generation of an irregular emission peak at the front.
摘要:
The present invention provides an LED device 1 as a light source having an excellent color reproducibility and high luminance. The LED device 1 comprises: a base 2 having a recess 4 with the upper surface opened, the inner wall surface of the recess 4 constituting a reflection surface 4a; a LED chip 5 disposed on the inner bottom of the recess 4; a resin 10 filled in the recess 4, the resin 10 including phosphors 7a, 7b, 7c which absorb a part of light emitted from the LED chip to convert the wavelength thereof and emit light; and a phosphor layer 6a, 6b, 6c formed on the reflection surface 4a, the phosphor layer 6a, 6b, 6c including the phosphors 7a, 7b, 7c.
摘要:
In a bonding method for a chip-type electronic part, the electronic part is prefixed onto an element-mounting section of a wiring substrate by using a non-conductive adhesive agent while an external metal electrode of the electronic part is brought close to, or in contact with the metal wiring pattern formed on the wiring substrate. Then, the wiring substrate, on which the electronic part has been prefixed, is subjected to an electroplating process while it is immersed into plating liquid containing a metal component, so that the metal component, which is deposited on the metal wiring pattern, grows to form a metal layer, and the external metal electrode and the metal wiring pattern are thus electrically connected to each other through the metal layer. With this arrangement, since no short circuit occurs between the external metal electrodes or between the portions of the metal wiring pattern, it is possible to miniaturize the electronic part and also to narrow its packaging pitch, thereby achieving a high-density packaging. Further, no stress, such as caused by heat and pressure during the bonding process, is applied onto the wiring substrate and the chip-type electronic part. This makes it possible to remarkably improve the reliability of the apparatus.