摘要:
In a cluster system including a plurality of operating systems operating on one computer, computer resources can be updated for and reallocated to each operating system. When the operating systems are used as active or standby operating systems, a multiple operating system management controller monitors the state of each operating system. At a failure of an active operating system, the controller allocates a larger part of computer resources to another operating system in a normal state and assigns the operating system as a new active operating system. Regardless of the failure, the computer system can be operated without changing processing capability thereof. The controller can monitor load of each operating system to allocate computer resources to the operating system according to the load.
摘要:
In a cluster system including a plurality of operating systems operating on one computer, computer resources can be updated for and reallocated to each operating system. When the operating systems are used as active or standby operating systems, a multiple operating system management controller monitors the state of each operating system. At a failure of an active operating system, the controller allocates a larger part of computer resources to another operating system in a normal state and assigns the operating system as a new active operating system. Regardless of the failure, the computer system can be operated without changing processing capability thereof. The controller can monitor load of each operating system to allocate computer resources to the operating system according to the load.
摘要:
According to one embodiment, a solid-state imaging device includes a first element formation region surrounded by an element isolation region in a semiconductor substrate having a first and a second surface, an upper element isolation layer on the first surface in the element formation region, a lower element isolation layer between the second surface and the upper element isolation layer, a first photodiode in the element formation region, a floating diffusion in the element formation region, and a first transistor disposed between the first photodiode and the floating diffusion. A side surface of the lower element isolation layer protrudes closer to the transistor than a side surface of the upper element isolation layer.
摘要:
According to one embodiment, a solid-state imaging device includes a semiconductor region, a first diffusion layer, a second diffusion layer, a third diffusion layer, an insulating film, a potential layer, and a read electrode. The semiconductor region includes first and second surfaces. The first diffusion layer is formed in the first surface. The first diffusion layer's concentration is a maximum value in a position at a first depth. The charge accumulation layer has a second depth. The second diffusion layer contacts the first diffusion layer. The third diffusion layer is formed in a position which faces the second diffusion layer in respect to the first diffusion layer. The insulating film is formed on the first surface. The potential layer is formed on the insulating film and has a predetermined potential. The read electrode is formed on the insulating film.
摘要:
According to one embodiment, a solid-state imaging device includes a pixel region which is configured such that a photoelectric conversion unit and a signal scanning circuit unit are included in a semiconductor substrate, and a matrix of unit pixels is disposed, and a driving circuit region which is configured such that a device driving circuit for driving the signal scanning circuit unit is disposed on the semiconductor substrate, wherein the photoelectric conversion unit is provided on a back surface side of the semiconductor substrate, which is opposite to a front surface of the semiconductor substrate where the signal scanning circuit unit is formed, and the unit pixel includes an insulation film which is provided in a manner to surround a boundary part with the unit pixel that neighbors and defines a device isolation region.
摘要:
According to one embodiment, a solid-state imaging device includes first and second pixel portions, first and second transfer transistors, first and second accumulation portions, an element isolation region, first and second amplifier transistors, and a first and second signal lines. The first and second pixel portions include photoelectric conversion elements, respectively. The first and second transfer transistors transfer first and second charges photoelectrically converted by the first and second pixel portions, respectively. The first and second accumulation portions are interposed between the first and second pixel portions, and accumulate the first and second charges, respectively. The element isolation region is interposed between the first and second accumulation portions. The first and second amplifier transistors amplify voltages generated in accordance with the first and second charges accumulated in the first and second accumulation portions, respectively. The first and second signal lines output signal voltages amplify by the amplifier transistors, respectively.
摘要:
According to one embodiment, a solid-state imaging device with a plurality of light-receiving layers for acquiring different color signals stacked one on top of another in the optical direction. Each of the light-receiving layers includes a photoelectric conversion part that receives light entering the back side of the layer and generates signal charges and a read transistor that is provided on the front side of the layer and reads the signal charges generated at the photoelectric conversion part. A semiconductor layer is stacked via an insulating film on the front side of the top layer of the plurality of light-receiving layers. At the semiconductor layer, there is provided a signal scanning circuit which processes a signal read by each of the read transistors and outputs a different color signal from each of the light-receiving layers to the outside.
摘要:
According to one embodiment, a solid-state imaging device includes first and second pixel portions, first and second transfer transistors, first and second accumulation portions, an element isolation region, first and second amplifier transistors, and a first and second signal lines. The first and second pixel portions include photoelectric conversion elements, respectively. The first and second transfer transistors transfer first and second charges photoelectrically converted by the first and second pixel portions, respectively. The first and second accumulation portions are interposed between the first and second pixel portions, and accumulate the first and second charges, respectively. The element isolation region is interposed between the first and second accumulation portions. The first and second amplifier transistors amplify voltages generated in accordance with the first and second charges accumulated in the first and second accumulation portions, respectively. The first and second signal lines output signal voltages amplify by the amplifier transistors, respectively.
摘要:
The present invention aims to provide an external-electrode discharge lamp able to suppress luminance variation, a manufacturing method for the lamp, and a backlight unit. A lamp (10) of the present invention includes a glass tube (11) sealed at both ends, and electrodes (18) and (19) provided around outer circumferential peripheries of the ends in the axial direction of the glass tube (11). During operation of the lamp (10), the electrodes (18) and (19) and the glass tube (11) between the electrodes (18) and (19) and a discharge space (14) equivalently function as first and second capacitors, whose capacitances are substantially the same.
摘要:
A fluorescent lamp including a glass bulb that is in a shape of a tube. External electrodes are formed as conductive layers each of which covers an outer surface of the glass bulb at an end thereof. Metal members in a shape of a cap are respectively connected to the external electrodes by covering at least part of the external electrodes. The metal members are formed such that rims of the metal members recede from a center of the glass bulb in the tube axis direction a distance L than rims of the external electrodes.