摘要:
An inspection unit is provided in a substrate processing apparatus performing resist coating processing and development processing on a substrate. In the inspection unit, a film thickness measuring device, a line width measuring device, an overlay measuring device and a macro defect inspection device are successively stacked and arranged from below. The inspection unit is provided on an intermediate portion of a substrate transport path formed in the substrate processing apparatus. The substrate processed in the substrate processing apparatus is selectively introduced into each inspection part. Therefore, the apparatus can properly inspect the substrate at need while suppressing reduction of the throughput. Thus provided are a substrate processing apparatus and a substrate inspection method capable of properly inspecting a substrate while suppressing reduction of the throughput.
摘要:
Substrate processing parts are stacked and arranged in a multistage manner around a transport robot arranged at the center of a processing area. Rotary application units are arranged on a second layer through an indexer and the transport robot. Rotary developing units are stacked above the rotary application units respectively on a fourth layer located above the second layer. Multistage thermal processing units and an edge exposure unit are horizontally arranged in line above the indexer. In place of the processing units, inspection units performing a macro defect inspection and pattern line width measurement may be arranged in the upside region of the indexer space.
摘要:
A substrate processing apparatus reduces an instantaneous maximum power consumption at turn-on. Power receiving parts of a plurality of processing units are connected to one end of a turn-on switch respectively through switches. The other end of the turn-on switch is connected to an external power source through a breaker. Timer values are set in advance in the timers, respectively. When the turn-on switch is turned on, the timers turn on the associated switches respectively after times which are defined by the timer values, whereby the processing units are provided with electric power, each with a delay of a constant time.
摘要:
A plurality of cleaning devices of the same type are attached to one support arm. The cleaning devices are simultaneously moved over a surface to be cleaned of a substrate supported and spun by a substrate supporting and spinning mechanism. Thus, the same type of cleaning devices share the task of cleaning the entire surface of the substrate, thereby to improve cleaning efficiency and shorten cleaning time. Different types of cleaning devices may be attached to the support arm for simultaneous cleaning of the entire surface of the substrate. Where different types of cleaning brushes are attached to the support arm, a cleaning operation may be carried out by simultaneously using cleaning brushes of optimal hardness for different regions on the substrate surface.
摘要:
A substrate processing apparatus includes a transport robot (TR1) formed with a telescopic vertical movement mechanism of a so-called telescopially nestable multi-tier construction. A drive mechanism (D1) is initially driven to move a support member (48) upwardly to simultaneously elevate a vertical movement member (42d). As the vertical movement member (42d) rises, a pulley (47c) simultaneously moves upwardly. As the pulley (47c) moves upwardly, a vertical movement member (42c) is lifted upwardly by a belt (L1). Similar actions elevate a pair of transport arms (31a, 31b) provided on the top of a vertical movement member (42a). The increase in the number of tiers of the nestable multi-tier structure precludes the increase in height of the transport robot (TR1) in its retracted position. The substrate processing apparatus, if having an increased height, is capable of transporting a substrate to and from processing portions and eliminates the need to reassemble and adjust the transport robot (TR1) for transportation of the apparatus.
摘要:
Provided is a robot comprising a telescopic-drive mechanism which does not contaminate works in a purified environment such as a clean room, is easy to handle, and requires no cover for covering the telescopic-drive mechanism. A robot comprises: an up-down axis in which a plurality of hollow axis sectional elements telescopically continue; and a telescopic-drive mechanism for driving the up-down axis to be vertically extended or retracted between an extended state in which a tip end of the up-down axis extends with respect to a base end thereof and a retracted state in which the tip end is moved close to the base end, wherein the telescopic-drive mechanism is integrated on one side of the up-down axis without being exposed from the up-down axis.
摘要:
A substrate processing apparatus includes a transport robot (TR1) formed with a telescopic vertical movement mechanism of a so-called telescopically nestable multi-tier construction. A drive mechanism (D1) is initially driven to move a support member (48) upwardly to simultaneously elevate a vertical movement member (42d). As the vertical movement member (42d) rises, a pulley (47c) simultaneously moves upwardly. As the pulley (47c) moves upwardly, a vertical movement member (42c) is lifted upwardly by a belt (L1). Similar actions elevate a pair of transport arms (31a, 31b) provided on the top of a vertical movement member (42a). The increase in the number of tiers of the nestable multi-tier structure precludes the increase in height of the transport robot (TR1) in its retracted position. The substrate processing apparatus, if having an increased height, is capable of transporting a substrate to and from processing portions and eliminates the need to reassemble and adjust the transport robot (TR1) for transportation of the apparatus.
摘要:
A substrate treating apparatus for treating a substrate in a predetermined substrate treating region. Each holder arm is supported in a proximal end portion thereof by an arm support to be swingable about a pivotal axis. In time of substrate treatment, the arm support is raised by an air cylinder. With the ascent of the arm support, a cam follower attached to a proximal end of the holder arm is guided by a cam groove. The holder arm, while being raised, turns from a vertical standby posture to a horizontal posture for treating the substrate. As a result, a treating device attached to a distal end of the holder arm moves to a treating position. In the treating position, the treating device treats the substrate. The holder arms are maintained in the vertical standby posture when out of use in substrate treatment. Thus, the holder arms require a reduced standby space.
摘要:
A method of and apparatus for cleaning a substrate which require shorter processing time with high processing efficiency are disclosed. A cleaning brush pivots about a pivot axis between two positions. An ultrasonic cleaning nozzle pivots about a pivot axis between two positions. To perform a cleaning process, the cleaning brush and the ultrasonic cleaning nozzle are driven in accordance with a processing pattern previously produced by an operator. The processing pattern is produced so that the movement of the cleaning brush between two positions and the movement of the ultrasonic cleaning nozzle between two positions are not caused simultaneously. Any processing pattern desired by the operator may be produced if this requirement is satisfied. Execution of the cleaning process in accordance with the processing pattern allows cleaning of a substrate using the cleaning brush and the ultrasonic cleaning nozzle at the same time.
摘要:
A moving image representing a maintenance method is reflected on a moving image display section in an operation panel. A worker can grasp the maintenance method by seeing the moving image displayed on the moving image display section. Consequently, maintenance can be performed in a short time and accurately in accordance with the moving image displayed on the moving image display section.