摘要:
According to one embodiment, a method for forming a semiconductor device includes: forming a first underlayer film that contains a first chemical element selected from the group consisting of germanium, aluminum, tungsten, hafnium, titanium, tantalum, nickel, cobalt and alkaline earth metals; forming, on the first underlayer film, a second underlayer film that contains a second chemical element selected from the group consisting of germanium, aluminum, tungsten, hafnium, titanium, tantalum, nickel, cobalt and alkaline earth metals, the second chemical element being an chemical element not contained in the first underlayer film; and forming, on the second underlayer film, a silicon oxide film by a CVD or ALD method by use of a silicon source containing at least one of an ethoxy group, a halogen group, an alkyl group, and an amino group, or a silicon source of a siloxane system.
摘要:
According to one embodiment, a method for forming a semiconductor device includes: forming a first underlayer film that contains a first atom selected from the group consisting of germanium, aluminum, tungsten, hafnium, titanium, tantalum, nickel, cobalt and alkaline earth metals; forming, on the first underlayer film, a second underlayer film that contains a second atom selected from the group consisting of germanium, aluminum, tungsten, hafnium, titanium, tantalum, nickel, cobalt and alkaline earth metals, the second atom being an atom not contained in the first underlayer film; and forming, on the second underlayer film, a silicon oxide film by a CVD or ALD method by use of a silicon source containing at least one of an ethoxy group, a halogen group, an alkyl group, and an amino group, or a silicon source of a siloxane system.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a semiconductor region, a tunnel insulator provided above the semiconductor region, a charge storage insulator provided above the tunnel insulator, a block insulator provided above the charge storage insulator, a control gate electrode provided above the block insulator, and an interface region including a metal element, the interface region being provided at one interface selected from between the semiconductor region and the tunnel insulator, the tunnel insulator and the charge storage insulator, the charge storage insulator and the block insulator, and the block insulator and the control gate electrode.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a semiconductor region, a tunnel insulator provided above the semiconductor region, a charge storage insulator provided above the tunnel insulator, a block insulator provided above the charge storage insulator, a control gate electrode provided above the block insulator, and an interface region including a metal element, the interface region being provided at one interface selected from between the semiconductor region and the tunnel insulator, the tunnel insulator and the charge storage insulator, the charge storage insulator and the block insulator, and the block insulator and the control gate electrode.
摘要:
A semiconductor device includes an interelectrode insulating film formed between a charge storage layer and a control electrode layer. The interelectrode insulating film is formed in a first region above an upper surface of an element isolation insulating film, a second region along a sidewall of the charge storage layer, and a third region above an upper surface of the charge storage layer. The interelectrode insulating film includes a first stack including a first silicon nitride film or a high dielectric constant film interposed between a first and a second silicon oxide film or a second stack including a second high dielectric constant film and a third silicon oxide film, and a second silicon nitride film formed between the control electrode layer and the first or the second stack. The second silicon nitride film is relatively thinner in the third region than in the first region.
摘要:
A semiconductor device including a semiconductor substrate having an active region isolated by an element isolation insulating film; a floating gate electrode film formed on a gate insulating film residing on the active region; an interelectrode insulating film formed above an upper surface of the element isolation insulating film and an upper surface and sidewalls of the floating gate electrode film, the interelectrode insulating film being configured by multiple film layers including a high dielectric film having a dielectric constant equal to or greater than a silicon nitride film; a control gate electrode film formed on the interelectrode insulating film; and a silicon oxide film formed between the upper surface of the floating gate electrode film and the interelectrode insulating film; wherein the high dielectric film of the interelectrode insulating film is placed in direct contact with the sidewalls of the floating gate electrode film.
摘要:
A nonvolatile semiconductor memory device includes a semiconductor substrate having a plurality of active regions separately formed by a plurality of trenches formed in a surface of the substrate at predetermined intervals, a first gate insulating film formed on an upper surface of the substrate corresponding to each active region, a gate electrode of a memory cell transistor formed by depositing an electrical charge storage layer formed on an upper surface of the gate insulating film, a second gate insulating film and a control gate insulating film sequentially, an element isolation insulating film buried in each trench and formed from a coating type oxide film, and an insulating film formed inside each trench on a boundary between the semiconductor substrate and the element isolation insulating film, the insulating film containing nontransition metal atoms and having a film thickness not more than 5 Å.
摘要:
A nonvolatile semiconductor memory device includes a semiconductor substrate, a first insulation layer formed on the semiconductor substrate, a charge storage layer formed on the first insulation layer, a second insulation layer formed on the charge storage layer, a control electrode formed on the second insulation layer. The second insulation layer includes a first silicon oxide film, an intermediate insulating film formed on the first silicon oxide film and having a relative permittivity of not less than 7, and a second silicon oxide film formed on the intermediate insulating film. A charge trap layer is formed at least in either first or second silicon oxide film or a boundary between the first silicon oxide film and the intermediate insulating film or a boundary between the second silicon oxide film and the intermediate insulating film.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device has a semiconductor substrate, a first insulating film formed on the semiconductor substrate, a charge storage film formed on the first insulating film, a second insulating film formed on the charge storage film, and a control electrode formed on the second insulating film. In the nonvolatile semiconductor memory device, the second insulating film has a laminated structure that has a first silicon oxide film, a first silicon nitride film, and a second silicon oxide film, a first atom is provided at an interface between the first silicon oxide film and the first silicon nitride film, and/or at an interface between the second silicon oxide film and the first silicon nitride film, and the first atom is selected from the group consisting of aluminum, boron, and alkaline earth metals.
摘要:
A nonvolatile semiconductor memory device includes a semiconductor substrate, a first insulation layer formed on the semiconductor substrate, a charge storage layer formed on the first insulation layer, a second insulation layer formed on the charge storage layer, and a control electrode formed on the second insulation layer. The second insulation layer includes a first silicon oxide film formed above the charge storage layer, a silicon nitride film formed on the first silicon oxide film, a metal oxide film formed on the silicon nitride film, and a nitride film formed on the metal oxide film. The metal oxide film has a relative permittivity of not less than 7.