Abstract:
Disclosed are compositions of electroactive polymers (EAPs) having improved performance stability. In the EAP compositions, a cross-linked polymer is deposited onto the surface of the EAP by vapor-deposition methods. Upon contact with an aqueous solution (e.g., an aqueous electrolyte solution), the vapor-deposited polymeric network becomes a hydrogel that encapsulates the EAPs. By modulating precursors and vapor deposition conditions, the mesh size of the resultant hydrogel coatings can be controlled to accommodate the key species that interact with the EAPs.
Abstract:
Presented herein are articles and methods featuring substrates with thin, uniform polymeric films grafted (e.g., covalently bonded) thereupon. The resulting coating provides significant reductions in thermal resistance, drop shedding size, and degradation rate during dropwise condensation of steam compared to existing coatings. Surfaces that promote dropwise shedding of low-surface tension condensates, such as liquid hydrocarbons, are also demonstrated herein.
Abstract:
Thin polymer layers for use as electrolytes in electrochemical cells, and associated electrochemical cells and methods, are generally described. The thin polymer layers may be formed by initiated chemical vapor deposition (iCVD) and may be doped with an electroactive species (e.g., Li+). The resultant thin polymer layers may exhibit high ionic conductivity and an ability to conformally coat structures having complex geometries (e.g., electrodes having high aspect ratios).
Abstract:
Presented herein are articles and methods featuring substrates with thin, uniform polymeric films grafted (e.g., covalently bonded) thereupon. The resulting coating provides significant reductions in thermal resistance, drop shedding size, and degradation rate during dropwise condensation of steam compared to existing coatings. Surfaces that promote dropwise shedding of low-surface tension condensates, such as liquid hydrocarbons, are also demonstrated herein.
Abstract:
Presented herein are articles and methods featuring substrates with thin, uniform polymeric films grafted (e.g., covalently bonded) thereupon. The resulting coating provides significant reductions in thermal resistance, drop shedding size, and degradation rate during dropwise condensation of steam compared to existing coatings. Surfaces that promote dropwise shedding of low-surface tension condensates, such as liquid hydrocarbons, are also demonstrated herein.
Abstract:
Disclosed are methods for fabricating supercapacitors (SCs) via vapor printing, specifically oxidative chemical vapor deposition (oCVD). Also disclosed are methods of using the supercapacitors, in particular for energy storage devices and photovoltaics.
Abstract:
Disclosed are methods for fabricating supercapacitors (SCs) via vapor printing, specifically oxidative chemical vapor deposition (oCVD). Also disclosed are methods of using the supercapacitors, in particular for energy storage devices and photovoltaics.
Abstract:
Presented herein are articles and methods featuring substrates with thin, uniform polymeric films grafted (e.g., covalently bonded) thereupon. The resulting coating provides significant reductions in thermal resistance, drop shedding size, and degradation rate during dropwise condensation of steam compared to existing coatings. Surfaces that promote dropwise shedding of low-surface tension condensates, such as liquid hydrocarbons, are also demonstrated herein.
Abstract:
Described are materials and methods for fabricating low-voltage MHz ion-gel-gated thin film transistor devices using patternable defect-free ionic liquid gels. Ionic liquid gels made by the initiated chemical vapor deposition methods described herein exhibit a capacitance of about 1 μF cm−2 at about 1 MHz, and can be as thin as about 20 nm to about 400 nm.
Abstract:
Described are materials and methods for fabricating low-voltage MHz ion-gel-gated thin film transistor devices using patternable defect-free ionic liquid gels. Ionic liquid gels made by the initiated chemical vapor deposition methods described herein exhibit a capacitance of about 1 μF cm−2 at about 1 MHz, and can be as thin as about 20 nm to about 400 nm.