Integrated resonant accelerometer using optical strain sensor

    公开(公告)号:US10571483B2

    公开(公告)日:2020-02-25

    申请号:US15807531

    申请日:2017-11-08

    Abstract: An accelerometer may comprise a proof mass, a first tether mechanically coupled to the side of the proof mass and to an anchor, and a ring resonator integrated with the tether to form a sensing tether. The ring resonator and the tether may be configured such that a strain sustained by the sensing tether causes a change of a resonance condition of the ring resonator. The accelerometer may comprise a wavelength locking loop configured to adaptively maintain a center frequency of the light energy at a resonant frequency of the sensing element, and a scale factor calibrator configured to stabilize a scale factor associated with the accelerometer. The accelerometer may further include a detection processor configured to receive the detection signal and produce an acceleration signal therefrom. The acceleration signal may correspond to an amount of change of the resonance condition with respect to a reference resonance condition.

    Hybrid integration for photonic integrated circuits

    公开(公告)号:US11340400B2

    公开(公告)日:2022-05-24

    申请号:US16809640

    申请日:2020-03-05

    Abstract: Photonic integrated circuits (PICs) enable manipulation of light on a chip for telecommunications and information processing. They can be made with silicon and silicon-compatible materials using complementary metal-oxide-semiconductor (CMOS) fabrication techniques developed for making electronics. Unfortunately, most light sources are made with III-V and II-VI materials, which are not compatible with silicon CMOS fabrication techniques. As a result, the light source for a PIC is either off-chip or integrated onto the PIC after CMOS fabrication is over. Hybrid integration can be improved by forming a recess in the PIC to receive a III-V or II-VI photonic chip. Mechanical stops formed in or next to the recess during fabrication align the photonic chip vertically to the PIC. Fiducials on the PIC and the photonic chip enable sub-micron lateral alignment. As a result, the photonic chip can be flip-chip bonded to the PIC with sub-micron vertical and lateral alignment precision.

    Apparatus and methods for photonic integrated resonant accelerometers

    公开(公告)号:US11493530B2

    公开(公告)日:2022-11-08

    申请号:US16677842

    申请日:2019-11-08

    Abstract: The accelerometers disclosed herein provide excellent sensitivity, long-term stability, and low SWaP-C through a combination of photonic integrated circuit technology with standard micro-electromechanical systems (MEMS) technology. Examples of these accelerometers use optical transduction to improve the scale factor of traditional MEMS resonant accelerometers by accurately measuring the resonant frequencies of very small (e.g., about 1 μm) tethers attached to a large (e.g., about 1 mm) proof mass. Some examples use ring resonators to measure the tether frequencies and some other examples use linear resonators to measure the tether frequencies. Potential commercial applications span a wide range from seismic measurement systems to automotive stability controls to inertial guidance to any other application where chip-scale accelerometers are currently deployed.

    INTEGRATED RESONANT ACCELEROMETER USING OPTICAL STRAIN SENSOR

    公开(公告)号:US20180128850A1

    公开(公告)日:2018-05-10

    申请号:US15807531

    申请日:2017-11-08

    CPC classification number: G01P15/093 G01P15/032 G01P15/097 G01P21/00

    Abstract: An accelerometer may comprise a proof mass, a first tether mechanically coupled to the side of the proof mass and to an anchor, and a ring resonator integrated with the tether to form a sensing tether. The ring resonator and the tether may be configured such that a strain sustained by the sensing tether causes a change of a resonance condition of the ring resonator. The accelerometer may comprise a wavelength locking loop configured to adaptively maintain a center frequency of the light energy at a resonant frequency of the sensing element, and a scale factor calibrator configured to stabilize a scale factor associated with the accelerometer. The accelerometer may further include a detection processor configured to receive the detection signal and produce an acceleration signal therefrom. The acceleration signal may correspond to an amount of change of the resonance condition with respect to a reference resonance condition.

Patent Agency Ranking